ﻻ يوجد ملخص باللغة العربية
In the present work we investigate the stability of the k-essence models allowing upto quadratic terms of the kinetic energy. The system of field equations is written as an autonomous system in terms of dimensionless variables and the stability criteria of the equilibria have been extensively investigated. The results strongly indicate that cosmologically consistent models dynamically evolve towards the quintessence model, a stable solution with a canonical form of the dark energy.
In this paper, we study the dynamics of k-essence in loop quantum cosmology (LQC). The study indicates that the loop quantum gravity (LQG) effect plays a key role only in the early epoch of the universe and is diluted at the later stage. The fixed po
We consider modifications of general relativity characterized by a special noncovariant constraint on metric coefficients, which effectively generates a perfect-fluid type of matter stress tensor in Einstein equations. Such class of modified gravity
We analyze two possible vector-field models using the techniques of dynamical systems. The first model involves a U(1)-vector field and the second a triad of SU(2)-vector fields. Both models include a gauge-fixing term and a power-law potential. A dy
We perform numerical simulations of the gravitational collapse of a k-essence scalar field. When the field is sufficiently strongly gravitating, a black hole forms. However, the black hole has two horizons: a light horizon (the ordinary black hole ho
We calculate the cosmological complexity under the framework of scalar curvature perturbations for a K-essence model with constant potential. In particular, the squeezed quantum states are defined by acting a two-mode squeezed operator which is chara