ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational collapse of k-essence

163   0   0.0 ( 0 )
 نشر من قبل Ryo Saotome
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform numerical simulations of the gravitational collapse of a k-essence scalar field. When the field is sufficiently strongly gravitating, a black hole forms. However, the black hole has two horizons: a light horizon (the ordinary black hole horizon) and a sound horizon that traps k-essence. In certain cases the k-essence signals can travel faster than light and the sound horizon is inside the light horizon. Under those circumstances, k-essence signals can escape from the black hole. Eventually, the two horizons merge and the k-essence signals can no longer escape.



قيم البحث

اقرأ أيضاً

We show that, in the context of the two-field measure theory, any k-essence model leads to the existence of a fluid made of non-relativistic matter and cosmological constant that would explain the dark matter and dark energy problem at the same time. On the other hand, kinetic gravity braiding models can lead to different behaviors, such as phantom dark energy, stiff matter, and a cosmological constant. For stiff matter, there even exists the case where the scalar field does not have any effect in the dynamics of the Universe.
We discuss a proposal on how gravitational collapse of a NEC (Null Energy Condition) violating spherically symmetric fluid distribution can avoid the formation of a zero proper volume singularity and eventually lead to a Lorentzian wormhole geometry. Our idea is illustrated using a time-evolving wormhole spacetime in which, we show how a collapsing sphere may never reach a zero proper volume end-state. The nature of geodesic congruences in such spacetimes is considered and analyzed. Our construction is inspired from a recently proposed static wormhole geometry, the multi-parameter Simpson-Visser line element, which is known to unite wormholes and black holes (regular and singular) in a single framework.
We calculate the cosmological complexity under the framework of scalar curvature perturbations for a K-essence model with constant potential. In particular, the squeezed quantum states are defined by acting a two-mode squeezed operator which is chara cterized by squeezing parameters $r_k$ and $phi_k$ on vacuum state. The evolution of these squeezing parameters are governed by the $Schrddot{o}dinger$ equation, in which the Hamiltonian operator is derived from the cosmological perturbative action. With aid of the solutions of $r_k$ and $phi_k$, one can calculate the quantum circuit complexity between unsqueezed vacuum state and squeezed quantum states via the wave-function approach. One advantage of K-essence is that it allows us to explore the effects of varied sound speeds on evolution of cosmological complexity. Besides, this model also provides a way for us to distinguish the different cosmological phases by extracting some basic informations, like the scrambling time and Lyapunov exponent etc, from the evolution of cosmological complexity.
In the present work we investigate the stability of the k-essence models allowing upto quadratic terms of the kinetic energy. The system of field equations is written as an autonomous system in terms of dimensionless variables and the stability crite ria of the equilibria have been extensively investigated. The results strongly indicate that cosmologically consistent models dynamically evolve towards the quintessence model, a stable solution with a canonical form of the dark energy.
We examine the dynamics of a self--gravitating magnetized electron gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general and appropriate and physically motivated initial conditions, we transform Ein stein--Maxwell field equations into a complete and self--consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (point-like) and anisotropic (cigar-like) singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range $hbox{T} sim10^{4}hbox{K}$ and $hbox{T}sim 10^{7}hbox{K}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا