ﻻ يوجد ملخص باللغة العربية
We consider Pimsner algebras that arise from C*-correspondences of finite rank, as dynamical systems with their rotational action. We revisit the Laca-Neshveyev classification of their equilibrium states at positive inverse temperature along with the parametrizations of the finite and the infinite parts simplices by tracial states on the diagonal. The finite rank entails an entropy theory that shapes the KMS-structure. We prove that the infimum of the tracial entropies dictates the critical inverse temperature, below which there are no equilibrium states for all Pimsner algebras. We view the latter as the entropy of the ambient C*-correspondence. This may differ from what we call strong entropy, above which there are no equilibrium states of infinite type. In particular, when the diagonal is abelian then the strong entropy is a maximum critical temperature for those. In this sense we complete the parametrization method of Laca-Raeburn and unify a number of examples in the literature.
We study the equilibrium simplex of Nica-Pimsner algebras arising from product systems of finite rank on the free abelian semigroup. First we show that every equilibrium state has a convex decomposition into parts parametrized by ideals on the unit h
We give necessary and sufficient conditions for nuclearity of Cuntz-Nica-Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping stone to tackle product systems over
We introduce the notion of a homotopy of product systems, and show that the Cuntz-Nica-Pimsner algebras of homotopic product systems over N^k have isomorphic K-theory. As an application, we give a new proof that the K-theory of a 2-graph C*-algebra i
We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions