ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction of a model set with complex windows

74   0   0.0 ( 0 )
 نشر من قبل Uwe Grimm
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael Baake




اسأل ChatGPT حول البحث

The well-known plastic number substitution gives rise to a ternary inflation tiling of the real line whose inflation factor is the smallest Pisot-Vijayaraghavan number. The corresponding dynamical system has pure point spectrum, and the associated control point sets can be described as regular model sets whose windows in two-dimensional internal space are Rauzy fractals with a complicated structure. Here, we calculate the resulting pure point diffraction measure via a Fourier matrix cocycle, which admits a closed formula for the Fourier transform of the Rauzy fractals, via a rapidly converging infinite product.



قيم البحث

اقرأ أيضاً

222 - Michael Baake 2010
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence or absence of measure rigidity (restrictions on the set of possible shift-invariant ergodic measures to being those of algebraic origin), and different entropy ranks (which may be viewed as the maximal spatial dimension in which the system resembles an i.i.d. process). Despite these differences, it is shown that the resulting diffraction spectra are essentially indistinguishable, thus raising further difficulties for the inverse problem of structure determination from diffraction spectra. Some of them may be resolved on the level of higher-order correlation functions, which we also briefly compare.
Consider the extended hull of a weak model set together with its natural shift action. Equip the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It is known that the extended hull is a measure-theoretic fa ctor of some group rotation, which is called the underlying torus. Among other results, in the article Periods and factors of weak model sets we showed that the extended hull is isomorphic to a factor group of the torus, where certain periods of the window of the weak model set have been factored out. This was proved for weak model sets having a compact window. In this note, we argue that the same results hold for arbitrary measurable and relatively compact windows. Our arguments crucially rely on Moodys work on uniform distribution in model sets. We also discuss implications for the diffraction of such weak model sets.
245 - Hui Wei , Shuguan Ji 2018
This paper is concerned with the periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficient. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with saddle point reduction technique, we obtain the existence of at least three periodic solutions whenever the period is a rational multiple of the length of the spatial interval. Our method is based on a delicate analysis for the asymptotic character of the spectrum of the wave operator with $x$-dependent coefficients, and the spectral properties play an essential role in the proof.
302 - Hui Wei , Shuguan Ji 2018
This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonho mogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with an approximation argument, we prove that there exist infinitely many periodic solutions whenever the period is a rational multiple of the length of the spatial interval. The proof is essentially based on the spectral properties of the wave operator with $x$-dependent coefficients.
Given a discrete subgroup $Gamma$ of $PU(1,n)$ it acts by isometries on the unit complex ball $Bbb{H}^n_{Bbb{C}}$, in this setting a lot of work has been done in order to understand the action of the group. However when we look at the action of $Gamm a$ on all of $ Bbb{P}^n_{Bbb{C}}$ little or nothing is known, in this paper study the action in the whole projective space and we are able to show that its equicontinuity agree with its Kulkarni discontuity set. Morever, in the non-elementary case, this set turns out to be the largest open set on which the group acts properly and discontinuously and can be described as the complement of the union of all complex projective hyperplanes in $ Bbb{P}^n_{Bbb{C}}$ which are tangent to $partial Bbb{H}^n_{Bbb{C}}$ at points in the Chen-Greenberg limit set $Lambda_{CG}(Gamma)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا