ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficient. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with saddle point reduction technique, we obtain the existence of at least three periodic solutions whenever the period is a rational multiple of the length of the spatial interval. Our method is based on a delicate analysis for the asymptotic character of the spectrum of the wave operator with $x$-dependent coefficients, and the spectral properties play an essential role in the proof.
This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonho
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three peri
This paper is devoted to the study of periodic solutions for a semilinear Euler-Bernoulli beam equation with variable coefficients. Such mathematical model may be described the infinitesimal, free, undamped in-plane bending vibrations of a thin strai
We consider the periodic solutions of a semilinear variable coefficient wave equation arising from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. The variable coefficient characterizes the
In this paper, we use the variational approach to investigate recurrent properties of solutions for stochastic partial differential equations, which is in contrast to the previous semigroup framework. Consider stochastic differential equations with m