ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain tuning of electronic structure in Bi4Ti3O12-LaCoO3 epitaxial thin films

143   0   0.0 ( 0 )
 نشر من قبل Woo Seok Choi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the crystal and electronic structures of ferroelectric Bi4Ti3O12 (BiT) single crystalline thin films site-specifically substituted with LaCoO3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO3 and SrTiO3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition metal 3d states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition metal oxides.



قيم البحث

اقرأ أيضاً

We report on the effect of epitaxial strain on magnetic and optical properties of perovskite LaCrO3 (LCO) single crystal thin films. Epitaxial LCO thin films are grown by pulsed laser deposition on proper choice of substrates to impose different stra in states. A combined experimental and theoretical approach is used to demonstrate the direct correlation between lattice-strain and functional properties. The magnetization results show that the lattice anisotropy plays a critical role in controlling the magnetic behavior of LCO films. The strain induced tetragonality in the film lattice strongly affects the optical transitions and charge transfer gap in LCO. This study opens new possibilities to tailoring the functional properties of LCO and related materials by strain engineering in epitaxial growth.
82 - D. Han , R. Moalla , I. Fina 2021
The impact of epitaxial strain on the structural, electronic, and thermoelectric properties of p-type transparent Sr-doped LaCrO3 thin films has been investigated. For this purpose, high-quality fully strained La0.75Sr0.25CrO3 (LSCO) epitaxial thin f ilms were grown by molecular beam epitaxy on three different (pseudo)cubic (001)-oriented perovskite oxide substrates: LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and DyScO3. The lattice mismatch between the LSCO films and the substrates induces in-plane strain ranging from -2.06% (compressive) to +1.75% (tensile). The electric conductivity can be controlled over 2 orders of magnitude, ranging from 0.5 S/cm (tensile strain) to 35 S/cm (compressive strain). Consistently, the Seebeck coefficient S can be finely tuned by a factor of almost 2 from 127 microV/K (compressive strain) to 208 microV/K (tensile strain). Interestingly, we show that the thermoelectric power factor can consequently be tuned by almost 2 orders of magnitude. The compressive strain yields a remarkable enhancement by a factor of 3 for 2% compressive strain with respect to almost relaxed films. These results demonstrate that epitaxial strain is a powerful lever to control the electric properties of LSCO and enhance its thermoelectric properties, which is of high interest for various devices and key applications such as thermal energy harvesters, coolers, transparent conductors, photocatalyzers, and spintronic memories.
Berry curvature plays a crucial role in exotic electronic states of quantum materials, such as intrinsic anomalous Hall effect. As Berry curvature is highly sensitive to subtle changes of electronic band structures, it can be finely tuned via externa l stimulus. Here, we demonstrate in SrRuO3 thin films that both the magnitude and sign of anomalous Hall resistivity can be effectively controlled with epitaxial strain. Our first-principles calculations reveal that epitaxial strain induces an additional crystal field splitting and changes the order of Ru d orbital energies, which alters the Berry curvature and leads to the sign and magnitude change of anomalous Hall conductivity. Furthermore, we show that the rotation of Ru magnetic moment in real space of tensile strained sample can result in an exotic nonmonotonic change of anomalous Hall resistivity with the sweeping of magnetic field, resembling the topological Hall effect observed in non-coplanar spin systems. These findings not only deepen our understanding of anomalous Hall effect in SrRuO3 systems, but also provide an effective tuning knob to manipulate Berry curvature and related physical properties in a wide range of quantum materials.
Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we report an effective tuning of the MIT in epitaxial SrVO3 (SVO) films by expanding the out-of-plane lattice constant without changing in-plane lattice parameters, through helium ion irradiation. Upon increase of the ion fluence, we observe a MIT with a crossover from metallic to insulating state in SVO films. A combination of transport and magnetoresistance measurements in SVO at low temperatures reveals that the observed MIT is mainly ascribed to electron-electron interactions rather than disorder-induced localization. Moreover, these results are well supported by the combination of density functional theory and dynamical mean field theory (DFT+DMFT) calculations, further confirming the decrease of the bandwidth and the enhanced electron-electron interactions resulting from the expansion of out-of-plane lattice constant. These findings provide new insights into the understanding of MIT in correlated oxides and perspectives for the design of unexpected functional devices based on strongly correlated electrons.
The interface and electronic structure of thin (~20-74 nm) Co3O4(110) epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl2O4(110) single crystal substrates have been investigated by means of real and reciprocal space techniques. A s-grown film surfaces are found to be relatively disordered and exhibit an oblique low energy electron diffraction (LEED) pattern associated with the O-rich CoO2 bulk termination of the (110) surface. Interface and bulk film structure are found to improve significantly with post-growth annealing at 820 K in air and display sharp rectangular LEED patterns, suggesting a surface stoichiometry of the alternative Co2O2 bulk termination of the (110) surface. Non-contact atomic force microscopy demonstrates the presence of wide terraces separated by atomic steps in the annealed films that are not present in the as-grown structures; the step height of ~ 2.7 A corresponds to two atomic layers and confirms a single termination for the annealed films, consistent with the LEED results. A model of the (1 * 1) surfaces that allows for compensation of the polar surfaces is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا