ﻻ يوجد ملخص باللغة العربية
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $Omega lesssim Gamma/hbar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-parameter pumping as well as pure spin without charge currents.
We use exact techniques to demonstrate theoretically the pumping of fractional charges in a single-level non-interacting quantum dot, when the dot-reservoir coupling is adiabatically driven from weak to strong coupling. The pumped charge averaged ove
We investigate adiabatic quantum pumping of Dirac fermions on the surface of a strong 3D topological insulator. Two different geometries are studied in detail, a normal metal -- ferromagnetic -- normal metal (NFN) junction and a ferromagnetic -- norm
Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theo
We investigate the appearance of pi lapses in the transmission phase theta of a two-level quantum dot with Coulomb interaction U. Using the numerical and functional renormalization group methods we study the entire parameter space for spin-polarized
We investigate adiabatic quantum pumping of chiral Majorana states in a system composed of two Mach--Zehnder type interferometers coupled via a quantum point contact. The pumped current is generated by periodic modulation of the phases accumulated by