ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-parameter non-adiabatic quantized charge pumping

121   0   0.0 ( 0 )
 نشر من قبل Bernd Kaestner
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.



قيم البحث

اقرأ أيضاً

We investigate a recently developed scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated nanowire. It has been shown theoretically that non-adiabaticity is fundamentally required to realize single-parameter pumping, while in previous multi-parameter pumping schemes it caused unwanted and less controllable currents. In this paper we demonstrate experimentally the constructive and destructive role of non-adiabaticity by analysing the pumping current over a broad frequency range.
Single electron pumps are set to revolutionize electrical metrology by enabling the ampere to be re-defined in terms of the elementary charge of an electron. Pumps based on lithographically-fixed tunnel barriers in mesoscopic metallic systems and nor mal/superconducting hybrid turnstiles can reach very small error rates, but only at MHz pumping speeds corresponding to small currents of the order 1 pA. Tunable barrier pumps in semiconductor structures have been operated at GHz frequencies, but the theoretical treatment of the error rate is more complex and only approximate predictions are available. Here, we present a monolithic, fixed barrier single electron pump made entirely from graphene. We demonstrate pump operation at frequencies up to 1.4 GHz, and predict the error rate to be as low as 0.01 parts per million at 90 MHz. Combined with the record-high accuracy of the quantum Hall effect and proximity induced Josephson junctions, accurate quantized current generation brings an all-graphene closure of the quantum metrological triangle within reach. Envisaged applications for graphene charge pumps outside quantum metrology include single photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs, and for readout of spin-based graphene qubits in quantum information processing.
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $Omega lesssim Gamma/h bar$, we perform an exact resummation of contributions of all orders in the pumping frequency. As striking non-adiabatic signatures, we find frequency-dependent phase shifts in the charge and spin currents, which allow for an effective single-parameter pumping as well as pure spin without charge currents.
We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots we move the system around charge triple points and transport exactly one electron or hole pe r cycle. We investigate the pumping as a function of the modulation frequency and amplitude and observe good current quantization up to frequencies of 18 MHz where rectification effects cause the mechanism to break down.
Presented in this paper is a proof-of-concept for a new approach to single electron pumping based on a Single Atom Transistor (SAT). By charge pumping electrons through an isolated dopant atom in silicon, precise currents of up to 160 pA at 1 GHz are generated, even if operating at 4.2 K, with no magnetic field applied, and only when one barrier is addressed by sinusoidal voltage cycles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا