ﻻ يوجد ملخص باللغة العربية
This paper proposes an approach to learn generic multi-modal mesh surface representations using a novel scheme for fusing texture and geometric data. Our approach defines an inverse mapping between different geometric descriptors computed on the mesh surface or its down-sampled version, and the corresponding 2D texture image of the mesh, allowing the construction of fused geometrically augmented images (FGAI). This new fused modality enables us to learn feature representations from 3D data in a highly efficient manner by simply employing standard convolutional neural networks in a transfer-learning mode. In contrast to existing methods, the proposed approach is both computationally and memory efficient, preserves intrinsic geometric information and learns highly discriminative feature representation by effectively fusing shape and texture information at data level. The efficacy of our approach is demonstrated for the tasks of facial action unit detection and expression classification. The extensive experiments conducted on the Bosphorus and BU-4DFE datasets, show that our method produces a significant boost in the performance when compared to state-of-the-art solutions
Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the exis
Face images are subject to many different factors of variation, especially in unconstrained in-the-wild scenarios. For most tasks involving such images, e.g. expression recognition from video streams, having enough labeled data is prohibitively expen
Facial action unit (AU) detection in the wild is a challenging problem, due to the unconstrained variability in facial appearances and the lack of accurate annotations. Most existing methods depend on either impractical labor-intensive labeling or in
Spatio-temporal relations among facial action units (AUs) convey significant information for AU detection yet have not been thoroughly exploited. The main reasons are the limited capability of current AU detection works in simultaneously learning spa
Current day pain assessment methods rely on patient self-report or by an observer like the Intensive Care Unit (ICU) nurses. Patient self-report is subjective to the individual and suffers due to poor recall. Pain assessment by manual observation is