ﻻ يوجد ملخص باللغة العربية
Spatio-temporal relations among facial action units (AUs) convey significant information for AU detection yet have not been thoroughly exploited. The main reasons are the limited capability of current AU detection works in simultaneously learning spatial and temporal relations, and the lack of precise localization information for AU feature learning. To tackle these limitations, we propose a novel spatio-temporal relation and attention learning framework for AU detection. Specifically, we introduce a spatio-temporal graph convolutional network to capture both spatial and temporal relations from dynamic AUs, in which the AU relations are formulated as a spatio-temporal graph with adaptively learned instead of predefined edge weights. Moreover, the learning of spatio-temporal relations among AUs requires individual AU features. Considering the dynamism and shape irregularity of AUs, we propose an attention regularization method to adaptively learn regional attentions that capture highly relevant regions and suppress irrelevant regions so as to extract a complete feature for each AU. Extensive experiments show that our approach achieves substantial improvements over the state-of-the-art AU detection methods on BP4D and especially DISFA benchmarks.
Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the exis
Facial action unit (AU) detection and face alignment are two highly correlated tasks since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. Most existing AU detection works
Most existing AU detection works considering AU relationships are relying on probabilistic graphical models with manually extracted features. This paper proposes an end-to-end deep learning framework for facial AU detection with graph convolutional n
Action Unit (AU) detection plays an important role for facial expression recognition. To the best of our knowledge, there is little research about AU analysis for micro-expressions. In this paper, we focus on AU detection in micro-expressions. Microe
This paper describes an approach to the facial action unit (AU) detection. In this work, we present our submission to the Field Affective Behavior Analysis (ABAW) 2021 competition. The proposed method uses the pre-trained JAA model as the feature ext