ﻻ يوجد ملخص باللغة العربية
Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.
Spatio-temporal relations among facial action units (AUs) convey significant information for AU detection yet have not been thoroughly exploited. The main reasons are the limited capability of current AU detection works in simultaneously learning spa
This paper describes an approach to the facial action unit (AU) detection. In this work, we present our submission to the Field Affective Behavior Analysis (ABAW) 2021 competition. The proposed method uses the pre-trained JAA model as the feature ext
Facial action unit (AU) detection and face alignment are two highly correlated tasks since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. Most existing AU detection works
Most existing AU detection works considering AU relationships are relying on probabilistic graphical models with manually extracted features. This paper proposes an end-to-end deep learning framework for facial AU detection with graph convolutional n
The detection of facial action units (AUs) has been studied as it has the competition due to the wide-ranging applications thereof. In this paper, we propose a novel framework for the AU detection from a single input image by grasping the textbf{c}o-