ﻻ يوجد ملخص باللغة العربية
We demonstrate quantum interference of three photons that are distinguishable in time, by resolving them in the conjugate parameter, frequency. We show that the multiphoton interference pattern in our setup can be manipulated by tuning the relative delays between the photons, without the need for reconfiguring the optical network. Furthermore, we observe that the symmetries of our optical network and the spectral amplitude of the input photons are manifested in the interference pattern. Moreover, we demonstrate time-reversed HOM-like interference in the spectral correlations using time-bin entangled photon pairs. By adding a time-varying dispersion using a phase modulator, our setup can be used to realize dynamically reconfigurable and scalable boson sampling in the time domain as well as frequency-resolved multiboson correlation sampling.
Pairs of photons entangled in their time-frequency degree of freedom are of great interest in quantum optics research and applications, due to their relative ease of generation and their high capacity for encoding information. Here we analyze, both t
Mid-infrared light scatters much less than shorter wavelengths, allowing greatly enhanced penetration depths for optical imaging techniques such as optical coherence tomography (OCT). However, both detection and broadband sources in the mid-IR are te
The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively br
Optical quantum technologies such as quantum sensing, quantum cryptography and quantum computation all utilize properties of non-classical light, such as precise photon-number and entangled photon-pair states, to surpass technologies based on the cla
Graph representations are a powerful concept for solving complex problems across natural science, as patterns of connectivity can give rise to a multitude of emergent phenomena. Graph-based approaches have proven particularly fruitful in quantum comm