ﻻ يوجد ملخص باللغة العربية
The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively broad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, g$^{(2)}$(0)=1.9$pm$0.1, indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find use in applications and quantum optics experiments.
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for
The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically-poled thin film lithium niobate microring resonator (PPLNMR) that re
Lithium niobate (LN), dubbed by many as the silicon of photonics, has recently risen to the forefront of chip-scale nonlinear optics research since its demonstration as an ultralow-loss integrated photonics platform. Due to its significant quadratic
Temporal cloaks have inspired the innovation of research on security and efficiency of quantum and fiber communications for concealing temporal events. The existing temporal cloaking approaches possessing ps ~ns cloaking windows employed the third-or
We report on the generation of photon pairs in the 1550-nm band suitable for long-distance fiber-optic quantum key distribution. The photon pairs were generated in a periodically poled lithium niobate waveguide with a high conversion-efficiency. Usin