ﻻ يوجد ملخص باللغة العربية
Mid-infrared light scatters much less than shorter wavelengths, allowing greatly enhanced penetration depths for optical imaging techniques such as optical coherence tomography (OCT). However, both detection and broadband sources in the mid-IR are technologically challenging. Interfering entangled photons in a nonlinear interferometer enables sensing with undetected photons making mid-IR sources and detectors obsolete. Here we implement mid-infrared frequency-domain OCT based on ultra-broadband entangled photon pairs. We demonstrate 10 ${mu}$m axial and 20 ${mu}$m lateral resolution 2D and 3D imaging of strongly scattering ceramic and paint samples. Together with $10^6$ times less noise scaled for the same amount of probe light and also vastly reduced footprint and technical complexity this technique can outperform conventional approaches with classical mid-IR light.
Owing to its capacity for unique (bio)-chemical specificity, microscopy withmid-IR illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection; with current mid-
We report on a technically simple approach to achieve high-resolution and high-sensitivity Fourier-domain OCT imaging in the mid-infrared range. The proposed OCT system employs an InF3 supercontinuum source. A specially designed dispersive scanning s
The potential for improving the penetration depth of optical coherence tomography systems by using increasingly longer wavelength light sources has been known since the inception of the technique in the early 1990s. Nevertheless, the development of m
We report on Mid-infrared (MIR) OCT at 4 $mu$m based on collinear sum-frequency upconversion and promote the A-scan scan rate to 3 kHz. We demonstrate the increased imaging speed for two spectral realizations, one providing an axial resolution of 8.6
Optical coherence tomography (OCT) is a 3D imaging technique that was introduced in 1991 [Science 254, 1178 (1991); Applied Optics 31, 919 (1992)]. Since 2018 there has been growing interest in a new type of OCT scheme based on the use of so-called n