ترغب بنشر مسار تعليمي؟ اضغط هنا

High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling

68   0   0.0 ( 0 )
 نشر من قبل Yongliang Hao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The NL-eEDM collaboration is building an experimental setup to search for the permanent electric dipole moment of the electron in a slow beam of cold barium fluoride molecules [Eur. Phys. J. D, 72, 197 (2018)]. Knowledge of molecular properties of BaF is thus needed to plan the measurements and in particular to determine an optimal laser-cooling scheme. Accurate and reliable theoretical predictions of these properties require incorporation of both high-order correlation and relativistic effects in the calculations. In this work theoretical investigations of the ground and the lowest excited states of BaF and its lighter homologues, CaF and SrF, are carried out in the framework of the relativistic Fock-space coupled cluster (FSCC) and multireference configuration interaction (MRCI) methods. Using the calculated molecular properties, we determine the Franck-Condon factors (FCFs) for the $A^2Pi_{1/2} rightarrow X^2Sigma^{+}_{1/2}$ transition, which was successfully used for cooling CaF and SrF and is now considered for BaF. For all three species, the FCFs are found to be highly diagonal. Calculations are also performed for the $B^2Sigma^{+}_{1/2} rightarrow X^2Sigma^{+}_{1/2}$ transition recently exploited for laser-cooling of CaF; it is shown that this transition is not suitable for laser-cooling of BaF, due to the non-diagonal nature of the FCFs in this system. Special attention is given to the properties of the $A^2Delta$ state, which in the case of BaF causes a leak channel, in contrast to CaF and SrF species where this state is energetically above the excited states used in laser-cooling. We also present the dipole moments of the ground and the excited states of the three molecules and the transition dipole moments (TDMs) between the different states.



قيم البحث

اقرأ أيضاً

In order to realize more sensitive eEDM measurement, it would be worthwhile to find some new laser-cooled molecules with larger internal effective electric field (E$_{eff}$), higher electric polarizability and longer lifetime of the eEDM measurement state. Here we explore the merits of mercuric monofluoride ($^{202}Hg^{19}F$, X$^ 2 {Sigma}_{1/2}$) for its potential of laser cooling and eEDM measurement. We theoretically investigated the electronic, rovibrational and hyperfine structures and verified the highly diagonal Franck-Condon factors (FCFs) of the main transitions by the Rydberg-Klein-Rees inversion (RKR) method and the Morse approximation. Hyperfine manifolds of the X$^ 2 {Sigma}_{1/2} ( u=0$) rotational states were examined with the effective Hamiltonian approach and a feasible sideband modulation scheme was proposed. In order to enhance optical cycling, the microwave remixing method was employed to address all the necessary levels. The Zeeman effect and the hyperfine structure magnetic g factors of the X$^ 2 {Sigma}_{1/2} ( u=0$,$mathit{ N } $=1) state were studied subsequently. Finally, its statistical sensitivities for the eEDM measurement were estimated respectively to be about $9times 10^{-31} ebullet cm $ (the laser cooled transverse beam experiment), $2times 10^{-31} ebullet cm$ (the fountain experiment) and $1times 10^{-32}$ ebullet cm (experiment with trapped cold molecules), indicating that $^{202}Hg^{19}F$ might be another promising eEDM candidate when compared with the most recent ThO result of $d_{ e } = (4.3 pm 3.1_{ stat } pm 2.6_{ syst })times 10^{-30} ebullet cm$ (Nature, 562, 355 (2018)). In addition, the possibility of direct Stark decelerating of the HgF radical was also discussed.
High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.49 nm and 460.86 nm of respective relev ance for the cooling transitions of cadmium and strontium atoms. This is achieved via the frequency doubling of a kHz-linewidth vertical-external-cavity surface-emitting laser (VECSEL), which is based on a novel gain chip design enabling lasing at > 2 W in the 915-928 nm region. Following an additional doubling stage, spectroscopy of the $^1S_0to{}^1P_1$ cadmium transition at 228.89 nm is performed on an atomic beam, with all the transitions from all eight natural isotopes observed in a single continuous sweep of more than 4 GHz in the deep ultraviolet. The absolute value of the transition frequency of Cd-114 and the isotope shifts relative to this transition are determined, with values for some of these shifts provided for the first time
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon g natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.
We demonstrate a simple stacked scheme that enables absorption imaging through a hole in the surface of a grating magneto-optical trap (GMOT) chip, placed immediately below a micro-fabricated vacuum cell. The imaging scheme is capable of overcoming t he reduced optical access and surface scatter that is associated with this chip-scale platform, while further permitting both trapping and imaging of the atoms from a single incident laser beam. The through-hole imaging is used to characterise the impact of the reduced optical overlap volume of the GMOT in the chip-scale cell, with an outlook to an optimised atom number in low volume systems.
289 - G. Wu , M. Ge 2012
Magnetic field enhancement has been studied in the past through replica and cavity cutting. Considerable progress of niobium cavity manufacturing and processing has been made since then. Wide variety of single cell cavities has been analyzed through replica technique. Their RF performances were compared in corresponding to geometric RF surface quality. It is concluded that the surface roughness affects cavity performance mostly in secondary role. The other factors must have played primary role in cavity performance limitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا