ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical investigation of the HgF radical towards laser cooling and eEDM measurement

54   0   0.0 ( 0 )
 نشر من قبل Zhenghai Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to realize more sensitive eEDM measurement, it would be worthwhile to find some new laser-cooled molecules with larger internal effective electric field (E$_{eff}$), higher electric polarizability and longer lifetime of the eEDM measurement state. Here we explore the merits of mercuric monofluoride ($^{202}Hg^{19}F$, X$^ 2 {Sigma}_{1/2}$) for its potential of laser cooling and eEDM measurement. We theoretically investigated the electronic, rovibrational and hyperfine structures and verified the highly diagonal Franck-Condon factors (FCFs) of the main transitions by the Rydberg-Klein-Rees inversion (RKR) method and the Morse approximation. Hyperfine manifolds of the X$^ 2 {Sigma}_{1/2} ( u=0$) rotational states were examined with the effective Hamiltonian approach and a feasible sideband modulation scheme was proposed. In order to enhance optical cycling, the microwave remixing method was employed to address all the necessary levels. The Zeeman effect and the hyperfine structure magnetic g factors of the X$^ 2 {Sigma}_{1/2} ( u=0$,$mathit{ N } $=1) state were studied subsequently. Finally, its statistical sensitivities for the eEDM measurement were estimated respectively to be about $9times 10^{-31} ebullet cm $ (the laser cooled transverse beam experiment), $2times 10^{-31} ebullet cm$ (the fountain experiment) and $1times 10^{-32}$ ebullet cm (experiment with trapped cold molecules), indicating that $^{202}Hg^{19}F$ might be another promising eEDM candidate when compared with the most recent ThO result of $d_{ e } = (4.3 pm 3.1_{ stat } pm 2.6_{ syst })times 10^{-30} ebullet cm$ (Nature, 562, 355 (2018)). In addition, the possibility of direct Stark decelerating of the HgF radical was also discussed.



قيم البحث

اقرأ أيضاً

The NL-eEDM collaboration is building an experimental setup to search for the permanent electric dipole moment of the electron in a slow beam of cold barium fluoride molecules [Eur. Phys. J. D, 72, 197 (2018)]. Knowledge of molecular properties of Ba F is thus needed to plan the measurements and in particular to determine an optimal laser-cooling scheme. Accurate and reliable theoretical predictions of these properties require incorporation of both high-order correlation and relativistic effects in the calculations. In this work theoretical investigations of the ground and the lowest excited states of BaF and its lighter homologues, CaF and SrF, are carried out in the framework of the relativistic Fock-space coupled cluster (FSCC) and multireference configuration interaction (MRCI) methods. Using the calculated molecular properties, we determine the Franck-Condon factors (FCFs) for the $A^2Pi_{1/2} rightarrow X^2Sigma^{+}_{1/2}$ transition, which was successfully used for cooling CaF and SrF and is now considered for BaF. For all three species, the FCFs are found to be highly diagonal. Calculations are also performed for the $B^2Sigma^{+}_{1/2} rightarrow X^2Sigma^{+}_{1/2}$ transition recently exploited for laser-cooling of CaF; it is shown that this transition is not suitable for laser-cooling of BaF, due to the non-diagonal nature of the FCFs in this system. Special attention is given to the properties of the $A^2Delta$ state, which in the case of BaF causes a leak channel, in contrast to CaF and SrF species where this state is energetically above the excited states used in laser-cooling. We also present the dipole moments of the ground and the excited states of the three molecules and the transition dipole moments (TDMs) between the different states.
96 - M. R. Tarbutt 2019
Recently, laser cooling methods have been extended from atoms to molecules. The complex rotational and vibrational energy level structure of molecules makes laser cooling difficult, but these difficulties have been overcome and molecules have now bee n cooled to a few microkelvin and trapped for several seconds. This opens many possibilities for applications in quantum science and technology, controlled chemistry, and tests of fundamental physics. This article explains how molecules can be decelerated, cooled and trapped using laser light, reviews the progress made in recent years, and outlines some future applications.
We report a generally applicable computational and experimental approach to determine vibronic branching ratios in linear polyatomic molecules to the $10^{-5}$ level, including for nominally symmetry forbidden transitions. These methods are demonstra ted in CaOH and YbOH, showing approximately two orders of magnitude improved sensitivity compared with the previous state of the art. Knowledge of branching ratios at this level is needed for the successful deep laser cooling of a broad range of molecular species.
Energy levels and emission spectra of $W^{25+}$ ion have been studied by performing the large-scale relativistic configuration interaction calculations. Configuration interaction strength is used to determine the configurations exhibiting the largest influence on the $4f^{3}$, $4d^{9}4f^{4}$, $4f^{2}5s$, $4f^{2}5p$, $4f^{2}5d$, $4f^{2}5f$, $4f^{2}5g$, and $4f^{2}6g$ configuration energies. It is shown that correlation effects are crucial for the $4f^{2}5s rightarrow 4f^{3}$ transition which in single-configuration approach occurs due to the weak electric octupole transitions. As well, the correlation effects affect the $4f^{2}5d rightarrow 4f^{3}$ transitions by increasing transition probabilities by an order. Corona model has been used to estimate the contribution of various transitions to the emission in a low-density electron beam ion trap (EBIT) plasma. Modeling in 10--30 nm wavelength range produces lines which do not form emission bands and can be observed in EBIT plasma.
Continuous wave (CW) lasers are the enabling technology for producing ultracold atoms and molecules through laser cooling and trapping. The resulting pristine samples of slow moving particles are the de facto starting point for both fundamental and a pplied science when a highly-controlled quantum system is required. Laser cooled atoms have recently led to major advances in quantum information, the search to understand dark energy, quantum chemistry, and quantum sensors. However, CW laser technology currently limits laser cooling and trapping to special types of elements that do not include highly abundant and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen. Here, we demonstrate that Doppler cooling and trapping by optical frequency combs may provide a route to trapped, ultracold atoms whose spectra are not amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon transition with an optical frequency comb, an efficient process to which every comb tooth coherently contributes. We extend this technique to create a magneto-optical trap (MOT), an electromagnetic beaker for accumulating the laser-cooled atoms for further study. Our results suggest that the efficient frequency conversion offered by optical frequency combs could provide a key ingredient for producing trapped, ultracold samples of natures most abundant building blocks, as well as antihydrogen. As such, the techniques demonstrated here may enable advances in fields as disparate as molecular biology and the search for physics beyond the standard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا