ﻻ يوجد ملخص باللغة العربية
Surface tension is a prominent factor for the deformation of solids at micro-/nano-scale. This paper investigates the effects of surface tension on the two-dimensional contact problems of an elastic layer bonded to the rigid substrate. Under the plane strain assumption, the elastic field induced by a uniformly distributed pressure within a finite width is formulated by applying the Fourier integral transform, and the limiting process leading to the solutions for a line force brings the requisite surface Greens function. For the indentation of an elastic layer by a rigid cylinder, the corresponding singular integral equation is derived, and subsequently solved by using an effective numerical method based on Gauss-Chebyshev quadrature formula. It is found from the theoretical and numerical results that the existence of surface tension strongly enhances the hardness of the elastic layer and significantly affects the distribution of contact pressure, when the size of contact region is comparable to the elastocapillary length. In addition, an approximated relationship between external load and half-width of contact is generalized in an explicit and concise form, which is useful and convenient for practical applications.
Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, whilst measuring the app
The classical models of Hertz, Sneddon and Boussinesq provide solutions for problems of indentation of a semi-infinite elastic massif by a sphere, a sphere or a cone and a flat punch. Although these models have been widely tested, it appears that at
The contact between a spherical indenter and a solid is considered. A numerical finite element model (F. E. M) to taking into account the surface tension of the solid is presented and assessed. It is shown that for nano-indentation of soft materials,
We analyze, by means of an RPA calculation, the conditions under which a mixture of oppositely charged polyelectrolytes can micro-segregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed
The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed d