ﻻ يوجد ملخص باللغة العربية
Space-time (ST) wave packets are coherent pulsed beams that propagate diffraction-free and dispersion-free by virtue of tight correlations introduced between their spatial and temporal spectral degrees of freedom. Less is known of the behavior of incoherent ST fields that maintain the spatio-temporal spectral structure of their coherent wave-packet counterparts while losing all purely spatial or temporal coherence. We show here that structuring the spatio-temporal spectrum of an incoherent field produces broadband incoherent ST fields that are diffraction-free. The intensity profile of these fields consists of a narrow spatial feature atop a constant background. Spatio-temporal spectral engineering allows controlling the width of this spatial feature, tuning it from a bright to a dark diffraction-free feature, and varying its amplitude relative to the background. These results pave the way to new opportunities in the experimental investigation of optical coherence of fields jointly structured in space and time by exploiting the techniques usually associated with ultrafast optics.
The propagation distance of a pulsed beam in free space is ultimately limited by diffraction and space-time coupling. Space-time (ST) wave packets are pulsed beams endowed with tight spatio-temporal spectral correlations that render them propagation-
Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where
In this work, we present the computational simulations of holographic metasurfaces to generation of the optical non-diffracting beams. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of optical n
Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of Maxwells equations, where spatial and temporal (spectral) dependence can be treated separately. In contrast to this traditional viewpoint, recent a
Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the sprea