ﻻ يوجد ملخص باللغة العربية
Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where complex transverse field distributions are required. However, the number and type of rigorously non-diffracting beams is severely limited because their symmetry is dictated by one of the coordinate system where the Helmholtz equation governing beam propagation is separable. Here, we demonstrate a powerful technique that allows the generation of a rich variety of quasi-non-diffracting optical beams featuring nearly arbitrary intensity distributions in the transverse plane. These can be readily engineered via modifications of the angular spectrum of the beam in order to meet the requirements of particular applications. Such beams are not rigorously non-diffracting but they maintain their shape over large distances, which may be tuned by varying the width of the angular spectrum. We report the generation of unique spiral patterns and patterns involving arbitrary combinations of truncated harmonic, Bessel, Mathieu, or parabolic beams occupying different spatial domains. Optical trapping experiments illustrate the opto-mechanical properties of such beams.
In this work, we present the computational simulations of holographic metasurfaces to generation of the optical non-diffracting beams. The metasurfaces are designed by the holographic technique and the computer-generated holograms (CGHs) of optical n
Space-time (ST) wave packets are coherent pulsed beams that propagate diffraction-free and dispersion-free by virtue of tight correlations introduced between their spatial and temporal spectral degrees of freedom. Less is known of the behavior of inc
We describe an experimental technique to generate a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, $W(mathbf{r_1,r_2})$. This is done by using a dynamic binary a
The explorations of the quantum-inspired symmetries in optical and photonic systems have witnessed immense research interests both fundamentally and technologically in a wide range of subjects of physics and engineering. One of the principal emerging
This paper aims to maximize optical force and torque on arbitrary micro- and nano-scale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we