ﻻ يوجد ملخص باللغة العربية
Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the spread in time caused by material dispersion. Furthermore, the law of anomalous refraction for space-time wave packets is generalized to the weakly dispersive situation. These results reveal new potential of space-time wave packets for the applications in real dispersive media.
The propagation distance of a pulsed beam in free space is ultimately limited by diffraction and space-time coupling. Space-time (ST) wave packets are pulsed beams endowed with tight spatio-temporal spectral correlations that render them propagation-
Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the fre
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temp
All known realizations of optical wave packets that accelerate along their propagation axis, such as Airy wave packets in dispersive media or wave-front-modulated X-waves, exhibit a constant acceleration; that is, the group velocity varies linearly w