ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Transfer Examples for Partial Domain Adaptation

118   0   0.0 ( 0 )
 نشر من قبل Zhangjie Cao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain adaptation is critical for learning in new and unseen environments. With domain adversarial training, deep networks can learn disentangled and transferable features that effectively diminish the dataset shift between the source and target domains for knowledge transfer. In the era of Big Data, the ready availability of large-scale labeled datasets has stimulated wide interest in partial domain adaptation (PDA), which transfers a recognizer from a labeled large domain to an unlabeled small domain. It extends standard domain adaptation to the scenario where target labels are only a subset of source labels. Under the condition that target labels are unknown, the key challenge of PDA is how to transfer relevant examples in the shared classes to promote positive transfer, and ignore irrelevant ones in the specific classes to mitigate negative transfer. In this work, we propose a unified approach to PDA, Example Transfer Network (ETN), which jointly learns domain-invariant representations across the source and target domains, and a progressive weighting scheme that quantifies the transferability of source examples while controlling their importance to the learning task in the target domain. A thorough evaluation on several benchmark datasets shows that our approach achieves state-of-the-art results for partial domain adaptation tasks.



قيم البحث

اقرأ أيضاً

135 - Weikai Li , Songcan Chen 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
One crucial aspect of partial domain adaptation (PDA) is how to select the relevant source samples in the shared classes for knowledge transfer. Previous PDA methods tackle this problem by re-weighting the source samples based on their high-level inf ormation (deep features). However, since the domain shift between source and target domains, only using the deep features for sample selection is defective. We argue that it is more reasonable to additionally exploit the pixel-level information for PDA problem, as the appearance difference between outlier source classes and target classes is significantly large. In this paper, we propose a reinforced transfer network (RTNet), which utilizes both high-level and pixel-level information for PDA problem. Our RTNet is composed of a reinforced data selector (RDS) based on reinforcement learning (RL), which filters out the outlier source samples, and a domain adaptation model which minimizes the domain discrepancy in the shared label space. Specifically, in the RDS, we design a novel reward based on the reconstruct errors of selected source samples on the target generator, which introduces the pixel-level information to guide the learning of RDS. Besides, we develope a state containing high-level information, which used by the RDS for sample selection. The proposed RDS is a general module, which can be easily integrated into existing DA models to make them fit the PDA situation. Extensive experiments indicate that RTNet can achieve state-of-the-art performance for PDA tasks on several benchmark datasets.
Recent works of multi-source domain adaptation focus on learning a domain-agnostic model, of which the parameters are static. However, such a static model is difficult to handle conflicts across multiple domains, and suffers from a performance degrad ation in both source domains and target domain. In this paper, we present dynamic transfer to address domain conflicts, where the model parameters are adapted to samples. The key insight is that adapting model across domains is achieved via adapting model across samples. Thus, it breaks down source domain barriers and turns multi-source domains into a single-source domain. This also simplifies the alignment between source and target domains, as it only requires the target domain to be aligned with any part of the union of source domains. Furthermore, we find dynamic transfer can be simply modeled by aggregating residual matrices and a static convolution matrix. Experimental results show that, without using domain labels, our dynamic transfer outperforms the state-of-the-art method by more than 3% on the large multi-source domain adaptation datasets -- DomainNet. Source code is at https://github.com/liyunsheng13/DRT.
Domain adaptation is one of the most crucial techniques to mitigate the domain shift problem, which exists when transferring knowledge from an abundant labeled sourced domain to a target domain with few or no labels. Partial domain adaptation address es the scenario when target categories are only a subset of source categories. In this paper, to enable the efficient representation of cross-domain plant images, we first extract deep features from pre-trained models and then develop adversarial consistent learning ($ACL$) in a unified deep architecture for partial domain adaptation. It consists of source domain classification loss, adversarial learning loss, and feature consistency loss. Adversarial learning loss can maintain domain-invariant features between the source and target domains. Moreover, feature consistency loss can preserve the fine-grained feature transition between two domains. We also find the shared categories of two domains via down-weighting the irrelevant categories in the source domain. Experimental results demonstrate that training features from NASNetLarge model with proposed $ACL$ architecture yields promising results on the PlantCLEF 2020 Challenge.
Partial Domain Adaptation (PDA) is a practical and general domain adaptation scenario, which relaxes the fully shared label space assumption such that the source label space subsumes the target one. The key challenge of PDA is the issue of negative t ransfer caused by source-only classes. For videos, such negative transfer could be triggered by both spatial and temporal features, which leads to a more challenging Partial Video Domain Adaptation (PVDA) problem. In this paper, we propose a novel Partial Adversarial Temporal Attentive Network (PATAN) to address the PVDA problem by utilizing both spatial and temporal features for filtering source-only classes. Besides, PATAN constructs effective overall temporal features by attending to local temporal features that contribute more toward the class filtration process. We further introduce new benchmarks to facilitate research on PVDA problems, covering a wide range of PVDA scenarios. Empirical results demonstrate the state-of-the-art performance of our proposed PATAN across the multiple PVDA benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا