ﻻ يوجد ملخص باللغة العربية
Domain adaptation is critical for learning in new and unseen environments. With domain adversarial training, deep networks can learn disentangled and transferable features that effectively diminish the dataset shift between the source and target domains for knowledge transfer. In the era of Big Data, the ready availability of large-scale labeled datasets has stimulated wide interest in partial domain adaptation (PDA), which transfers a recognizer from a labeled large domain to an unlabeled small domain. It extends standard domain adaptation to the scenario where target labels are only a subset of source labels. Under the condition that target labels are unknown, the key challenge of PDA is how to transfer relevant examples in the shared classes to promote positive transfer, and ignore irrelevant ones in the specific classes to mitigate negative transfer. In this work, we propose a unified approach to PDA, Example Transfer Network (ETN), which jointly learns domain-invariant representations across the source and target domains, and a progressive weighting scheme that quantifies the transferability of source examples while controlling their importance to the learning task in the target domain. A thorough evaluation on several benchmark datasets shows that our approach achieves state-of-the-art results for partial domain adaptation tasks.
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which
One crucial aspect of partial domain adaptation (PDA) is how to select the relevant source samples in the shared classes for knowledge transfer. Previous PDA methods tackle this problem by re-weighting the source samples based on their high-level inf
Recent works of multi-source domain adaptation focus on learning a domain-agnostic model, of which the parameters are static. However, such a static model is difficult to handle conflicts across multiple domains, and suffers from a performance degrad
Domain adaptation is one of the most crucial techniques to mitigate the domain shift problem, which exists when transferring knowledge from an abundant labeled sourced domain to a target domain with few or no labels. Partial domain adaptation address
Partial Domain Adaptation (PDA) is a practical and general domain adaptation scenario, which relaxes the fully shared label space assumption such that the source label space subsumes the target one. The key challenge of PDA is the issue of negative t