ﻻ يوجد ملخص باللغة العربية
One crucial aspect of partial domain adaptation (PDA) is how to select the relevant source samples in the shared classes for knowledge transfer. Previous PDA methods tackle this problem by re-weighting the source samples based on their high-level information (deep features). However, since the domain shift between source and target domains, only using the deep features for sample selection is defective. We argue that it is more reasonable to additionally exploit the pixel-level information for PDA problem, as the appearance difference between outlier source classes and target classes is significantly large. In this paper, we propose a reinforced transfer network (RTNet), which utilizes both high-level and pixel-level information for PDA problem. Our RTNet is composed of a reinforced data selector (RDS) based on reinforcement learning (RL), which filters out the outlier source samples, and a domain adaptation model which minimizes the domain discrepancy in the shared label space. Specifically, in the RDS, we design a novel reward based on the reconstruct errors of selected source samples on the target generator, which introduces the pixel-level information to guide the learning of RDS. Besides, we develope a state containing high-level information, which used by the RDS for sample selection. The proposed RDS is a general module, which can be easily integrated into existing DA models to make them fit the PDA situation. Extensive experiments indicate that RTNet can achieve state-of-the-art performance for PDA tasks on several benchmark datasets.
Heterogeneous domain adaptation (HDA) aims to facilitate the learning task in a target domain by borrowing knowledge from a heterogeneous source domain. In this paper, we propose a Soft Transfer Network (STN), which jointly learns a domain-shared cla
Domain adaptation is critical for learning in new and unseen environments. With domain adversarial training, deep networks can learn disentangled and transferable features that effectively diminish the dataset shift between the source and target doma
The recent advances in deep transfer learning reveal that adversarial learning can be embedded into deep networks to learn more transferable features to reduce the distribution discrepancy between two domains. Existing adversarial domain adaptation m
Data-driven models are becoming essential parts in modern mechanical systems, commonly used to capture the behavior of various equipment and varying environmental characteristics. Despite the advantages of these data-driven models on excellent adapti
Brain imaging data are important in brain sciences yet expensive to obtain, with big volume (i.e., large p) but small sample size (i.e., small n). To tackle this problem, transfer learning is a promising direction that leverages source data to improv