ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Transfer for Multi-Source Domain Adaptation

90   0   0.0 ( 0 )
 نشر من قبل Yunsheng Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent works of multi-source domain adaptation focus on learning a domain-agnostic model, of which the parameters are static. However, such a static model is difficult to handle conflicts across multiple domains, and suffers from a performance degradation in both source domains and target domain. In this paper, we present dynamic transfer to address domain conflicts, where the model parameters are adapted to samples. The key insight is that adapting model across domains is achieved via adapting model across samples. Thus, it breaks down source domain barriers and turns multi-source domains into a single-source domain. This also simplifies the alignment between source and target domains, as it only requires the target domain to be aligned with any part of the union of source domains. Furthermore, we find dynamic transfer can be simply modeled by aggregating residual matrices and a static convolution matrix. Experimental results show that, without using domain labels, our dynamic transfer outperforms the state-of-the-art method by more than 3% on the large multi-source domain adaptation datasets -- DomainNet. Source code is at https://github.com/liyunsheng13/DRT.



قيم البحث

اقرأ أيضاً

Conventional unsupervised domain adaptation (UDA) assumes that training data are sampled from a single domain. This neglects the more practical scenario where training data are collected from multiple sources, requiring multi-source domain adaptation . We make three major contributions towards addressing this problem. First, we collect and annotate by far the largest UDA dataset, called DomainNet, which contains six domains and about 0.6 million images distributed among 345 categories, addressing the gap in data availability for multi-source UDA research. Second, we propose a new deep learning approach, Moment Matching for Multi-Source Domain Adaptation M3SDA, which aims to transfer knowledge learned from multiple labeled source domains to an unlabeled target domain by dynamically aligning moments of their feature distributions. Third, we provide new theoretical insights specifically for moment matching approaches in both single and multiple source domain adaptation. Extensive experiments are conducted to demonstrate the power of our new dataset in benchmarking state-of-the-art multi-source domain adaptation methods, as well as the advantage of our proposed model. Dataset and Code are available at url{http://ai.bu.edu/M3SDA/}.
To reduce annotation labor associated with object detection, an increasing number of studies focus on transferring the learned knowledge from a labeled source domain to another unlabeled target domain. However, existing methods assume that the labele d data are sampled from a single source domain, which ignores a more generalized scenario, where labeled data are from multiple source domains. For the more challenging task, we propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN), which can simultaneously enhance domain invariance and preserve discriminative power. Specifically, the framework contains multiple source subnets and a pseudo target subnet. First, we propose a hierarchical feature alignment strategy to conduct strong and weak alignments for low- and high-level features, respectively, considering their different effects for object detection. Second, we develop a novel pseudo subnet learning algorithm to approximate optimal parameters of pseudo target subset by weighted combination of parameters in different source subnets. Finally, a consistency regularization for region proposal network is proposed to facilitate each subnet to learn more abstract invariances. Extensive experiments on different adaptation scenarios demonstrate the effectiveness of the proposed model.
Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain, which is a more practical and challenging problem compared to the conventional single-source domain adaptation. In this pro blem, it is essential to utilize the labeled source data and the unlabeled target data to approach the conditional distribution of semantic label on target domain, which requires the joint modeling across different domains and also an effective domain combination scheme. The graphical structure among different domains is useful to tackle these challenges, in which the interdependency among various instances/categories can be effectively modeled. In this work, we propose two types of graphical models,i.e. Conditional Random Field for MSDA (CRF-MSDA) and Markov Random Field for MSDA (MRF-MSDA), for cross-domain joint modeling and learnable domain combination. In a nutshell, given an observation set composed of a query sample and the semantic prototypes i.e. representative category embeddings) on various domains, the CRF-MSDA model seeks to learn the joint distribution of labels conditioned on the observations. We attain this goal by constructing a relational graph over all observations and conducting local message passing on it. By comparison, MRF-MSDA aims to model the joint distribution of observations over different Markov networks via an energy-based formulation, and it can naturally perform label prediction by summing the joint likelihoods over several specific networks. Compared to the CRF-MSDA counterpart, the MRF-MSDA model is more expressive and possesses lower computational cost. We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity, and both models achieve superior performance over existing methods on all benchmarks.
168 - Ning Ma , Jiajun Bu , Lixian Lu 2021
Domain Adaptation has been widely used to deal with the distribution shift in vision, language, multimedia etc. Most domain adaptation methods learn domain-invariant features with data from both domains available. However, such a strategy might be in feasible in practice when source data are unavailable due to data-privacy concerns. To address this issue, we propose a novel adaptation method via hypothesis transfer without accessing source data at adaptation stage. In order to fully use the limited target data, a semi-supervised mutual enhancement method is proposed, in which entropy minimization and augmented label propagation are used iteratively to perform inter-domain and intra-domain alignments. Compared with state-of-the-art methods, the experimental results on three public datasets demonstrate that our method gets up to 19.9% improvements on semi-supervised adaptation tasks.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a singl e-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا