ﻻ يوجد ملخص باللغة العربية
By inserting a SrZrO$_3$ buffer layer between the film and the substrate, we demonstrate a significant reduction of the threading dislocation density with an associated improvement of the electron mobility in La:BaSnO$_3$ films. A room temperature mobility of 140 cm$^2$ V$^{-1}text{s}^{-1}$ is achieved for 25-nm-thick films without any post-growth treatment. The density of threading dislocations is only $4.9times 10^{9}$ cm$^{-2}$ for buffered films prepared on (110) TbScO$_3$ substrates by pulsed laser deposition.
Due to the photo-instability and hysteresis of TiO$_2$ electron transport layer (ETL) in perovskite solar cells (PSCs), novel electron transport materials are highly demanded. Here, we show ideal band alignment between La-doped BaSnO$_3$ (LBSO) and m
Transparent oxide semiconductors (TOSs) showing both high visible transparency and high electron mobility have attracted great attention towards the realization of advanced optoelectronic devices. La-doped BaSnO3 (LBSO) is one of the most promising T
The high room temperature mobility and the electron effective mass in BaSnO$_3$ are investigated in depth by evaluation of the free carrier absorption observed in infrared spectra for epitaxial films with free electron concentrations from $8.3 times
SrTiO$_3$ is a promising $n$-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO$_3$ doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition (PLD). The thermoelectric and galva
Cubic perovskite oxides are emerging high-mobility transparent conducting oxides (TCOs), but Ge-based TCOs had not been known until the discovery of metastable cubic SrGeO$_3$. $0.5 times 0.4 times 0.2$-mm$^3$ large single crystals of the cubic SrGeO