ﻻ يوجد ملخص باللغة العربية
The long-range interaction between Rydberg-excited atoms endows a medium with large optical nonlinearity. Here, we demonstrate an optical switch to operate on a single photon from an entangled photon pair under a Rydberg electromagnetically induced transparency configuration. With the presence of the Rydberg blockade effect, we switch on a gate field to make the atomic medium nontransparent thereby absorbing the single photon emitted from another atomic ensemble via the spontaneous four-wave mixing process. In contrast to the case without a gate field, more than 50% of the photons sent to the switch are blocked, and finally achieve an effective single-photon switch. There are on average 1-2 gate photons per effective blockade sphere in one gate pulse. This switching effect on a single entangled photon depends on the principal quantum number and the photon number of the gate field. Our experimental progress is significant in the quantum information process especially in controlling the interaction between Rydberg atoms and entangled photon pairs.
Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the re
For neutral atom qubits, the two-qubit gate is typically realized via the Rydberg blockade effect, which hints about the special status of the Rydberg level besides the regular qubit register states. Here, we carry out experimental and theoretical st
Coherent manipulation of an increasing number of qubits for the generation of entangled states has been an important goal and benchmark in the emerging field of quantum information science. The multiparticle entangled states serve as physical resourc
In the classical Hong-Ou-Mandel (HOM) effect pairs of photons with bosonic (fermionic) spatial wavefunction coalesce (anti-coalesce) when mixed on a lossless beamsplitter. Here we report that the presence of dissipation in the beamsplitter allows the
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double seq