ﻻ يوجد ملخص باللغة العربية
For neutral atom qubits, the two-qubit gate is typically realized via the Rydberg blockade effect, which hints about the special status of the Rydberg level besides the regular qubit register states. Here, we carry out experimental and theoretical studies to reveal how the ground-Rydberg coherence of the control qubit atom affects the process of two-qubit Controlled-Z ($C_Z$) gate, such as the commonly used ground-Rydberg $pi$-gap-$pi$ pulse sequence originally proposed in Phys. Rev. Lett. textbf{85}, 2208 (2000). We measure the decoherence of the control qubit atom after the $pi$-gap-$pi$ pulses and make a direct comparison with the typical decoherence time $tau_{gr}$ extracted from Ramsey fringes of the ground-Rydberg transition. In particular, we observe that the control qubit atom subject to such pulse sequences experiences a process which is essentially similar to the ground-Rydberg Ramsey interference. Furthermore, we build a straightforward theoretical model to link the decoherence process of control qubit subject to $C_Z$ gate $pi$-gap-$pi$ pulse sequence and the $tau_{gr}$, and also analyze the typical origins of decoherence effects. Finally, we discuss the $C_Z$ gate fidelity loss due to the limits imposed by the ground-Rydberg coherence properties and prospective for improving fidelity with new gate protocols.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l
We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ra
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Re
Neutral atom array serves as an ideal platform to study the quantum logic gates, where intense efforts have been devoted to improve the two-qubit gate fidelity. We report our recent findings in constructing a different type of two-qubit controlled-PH