ﻻ يوجد ملخص باللغة العربية
Coherent manipulation of an increasing number of qubits for the generation of entangled states has been an important goal and benchmark in the emerging field of quantum information science. The multiparticle entangled states serve as physical resources for measurement-based quantum computing and high-precision quantum metrology. However, their experimental preparation has proved extremely challenging. To date, entangled states up to six, eight atoms, or six photonic qubits have been demonstrated. Here, by exploiting both the photons polarization and momentum degrees of freedom, we report the creation of hyper-entangled six-, eight-, and ten-qubit Schrodinger cat states. We characterize the cat states by evaluating their fidelities and detecting the presence of genuine multi-partite entanglement. Small modifications of the experimental setup will allow the generation of various graph states up to ten qubits. Our method provides a shortcut to expand the effective Hilbert space, opening up interesting applications such as quantum-enhanced super-resolving phase measurement, graph-state generation for anyonic simulation and topological error correction, and novel tests of nonlocality with hyper-entanglement.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process
Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-compo
The promise of quantum computing with imperfect qubits relies on the ability of a quantum computing system to scale cheaply through error correction and fault-tolerance. While fault-tolerance requires relatively mild assumptions about the nature of q
We study a qubit-oscillator system, with a time-dependent coupling coefficient, and present a scheme for generating entangled Schrodinger-cat states with large mean photon numbers and also a scheme that protects the cat states against dephasing cause
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogen