ﻻ يوجد ملخص باللغة العربية
In a seminal paper Drinfeld explained how to associate to every classical r-matrix for a Lie algebra $lie g$ a twisting element based on $mathcal{U}(lie g)[[hbar]]$, or equivalently a left invariant star product of the corresponding symplectic structure $omega$ on the 1-connected Lie group G of g. In a recent paper, the authors solve the same problem by means of Fedosov quantization. In this short note we provide a connection between the two constructions by computing the characteristic (Fedosov) class of the twist constructed by Drinfeld and proving that it is the trivial class given by $ frac{[omega]}{hbar}$.
In this thesis we give obstructions for Drinfeld twist deformation quantization on several classes of symplectic manifolds. Motivated from this quantization procedure, we further construct a noncommutative Cartan calculus on any braided commutative a
Fedosovs simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have t
Bialgebroids (resp. Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings. Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras as well as underlying module algebras (=quantum spaces)
We prove that the Drinfeld double of the category of sheaves on an orbifold is equivalent to the category of sheves on the corresponding inertia orbifold.
The Shapovalov determinant for a class of pointed Hopf algebras is calculated, including quantized enveloping algebras, Lusztigs small quantum groups, and quantized Lie superalgebras. Our main tools are root systems, Weyl groupoids, and Lusztig type