ترغب بنشر مسار تعليمي؟ اضغط هنا

Drinfeld doubles and Shapovalov determinants

198   0   0.0 ( 0 )
 نشر من قبل I. Heckenberger
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Shapovalov determinant for a class of pointed Hopf algebras is calculated, including quantized enveloping algebras, Lusztigs small quantum groups, and quantized Lie superalgebras. Our main tools are root systems, Weyl groupoids, and Lusztig type isomorphisms. We elaborate powerful novel techniques for the algebras at roots of unity, and pass to the general case using a density argument. Key words: Hopf algebra, Nichols algebra, quantum group, representation



قيم البحث

اقرأ أيضاً

141 - I. Heckenberger 2008
In the structure theory of quantized enveloping algebras, the algebra isomorphisms determined by Lusztig led to the first general construction of PBW bases of these algebras. Also, they have important applications to the representation theory of thes e and related algebras. In the present paper the Drinfeld double for a class of graded Hopf algebras is investigated. Various quantum algebras, including multiparameter quantizations of semisimple Lie algebras and of Lie superalgebras, are covered by the given definition. For these Drinfeld doubles Lusztig maps are defined. It is shown that these maps induce isomorphisms between doubles of Nichols algebras of diagonal type. Further, the obtained isomorphisms satisfy Coxeter type relations in a generalized sense. As an application, the Lusztig isomorphisms are used to give a characterization of Nichols algebras of diagonal type with finite arithmetic root system. Key words: Hopf algebra, quantum group, Weyl groupoid
242 - A.M. Semikhatov 2009
For a Hopf algebra B with bijective antipode, we show that the Heisenberg double H(B^*) is a braided commutative Yetter--Drinfeld module algebra over the Drinfeld double D(B). The braiding structure allows generalizing H(B^*) = B^{*cop}braid B to Hei senberg n-tuples and chains ...braid B^{*cop}braid B braid B^{*cop}braid Bbraid..., all of which are Yetter--Drinfeld D(B)-module algebras. For B a particular Taft Hopf algebra at a 2p-th root of unity, the construction is adapted to yield Yetter--Drinfeld module algebras over the 2p^3-dimensional quantum group U_qsl(2).
115 - Cris Negron 2020
We prove that the Drinfeld double of an arbitrary finite group scheme has finitely generated cohomology. That is to say, for G any finite group scheme, and D(G) the Drinfeld double of the group ring kG, we show that the self-extension algebra of the trivial representation for D(G) is a finitely generated algebra, and that for each D(G)-representation V the extensions from the trivial representation to V form a finitely generated module over the aforementioned algebra. As a corollary, we find that all categories rep(G)*_M dual to rep(G) are of also of finite type (i.e. have finitely generated cohomology), and we provide a uniform bound on their Krull dimensions. This paper completes earlier work of E. M. Friedlander and the author.
We consider the finite generation property for cohomology of a finite tensor category C, which requires that the self-extension algebra of the unit Ext*_C(1,1) is a finitely generated algebra and that, for each object V in C, the graded extension gro up Ext*_C(1,V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C. For example, the stated result holds when C is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0, we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes.
Given a Hopf algebra $H$ and a projection $Hto A$ to a Hopf subalgebra, we construct a Hopf algebra $r(H)$, called the partial dualization of $H$, with a projection to the Hopf algebra dual to $A$. This construction provides powerful techniques in th e general setting of braided monoidal categories. The construction comprises in particular the reflections of generalized quantum groups, arxiv:1111.4673 . We prove a braided equivalence between the Yetter-Drinfeld modules over a Hopf algebra and its partial dualization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا