ﻻ يوجد ملخص باللغة العربية
Bialgebroids (resp. Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings. Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras as well as underlying module algebras (=quantum spaces). Smash product construction combines these two into the new algebra which, in fact, does not depend on the twist. However, we can turn it into bialgebroid in the twist dependent way. Alternatively, one can use Drinfeld twist techniques in a category of bialgebroids. We show that both techniques indicated in the title: twisting of a bialgebroid or constructing a bialgebroid from the twisted bialgebra give rise to the same result in the case of normalized cocycle twist. This can be useful for better description of a quantum deformed phase space. We argue that within this bialgebroid framework one can justify the use of deformed coordinates (i.e. spacetime noncommutativity) which are frequently postulated in order to explain quantum gravity effects.
We introduce Lie-Nijenhuis bialgebroids as Lie bialgebroids endowed with an additional derivation-like object. They give a complete infinitesimal description of Poisson-Nijenhuis groupoids, and key examples include Poisson-Nijenhuis manifolds, holomo
Two one-parameter families of twists providing kappa-Minkowski * -product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra p
In this thesis we give obstructions for Drinfeld twist deformation quantization on several classes of symplectic manifolds. Motivated from this quantization procedure, we further construct a noncommutative Cartan calculus on any braided commutative a
We consider closed XXX spin chains with broken total spin $U(1)$ symmetry within the framework of the modified algebraic Bethe ansatz. We study multiple actions of the modified monodromy matrix entries on the modified Bethe vectors. The obtained form
We consider abelian twisted loop Toda equations associated with the complex general linear groups. The Dodd--Bullough--Mikhailov equation is a simplest particular case of the equations under consideration. We construct new soliton solutions of these