ﻻ يوجد ملخص باللغة العربية
In the past few years, social media has risen as a platform where people express and share personal incidences about abuse, violence and mental health issues. There is a need to pinpoint such posts and learn the kind of response expected. For this purpose, we understand the sentiment that a personal story elicits on different posts present on different social media sites, on the topics of abuse or mental health. In this paper, we propose a method supported by hand-crafted features to judge if the post requires an empathetic response. The model is trained upon posts from various web-pages and corresponding comments, on both the captions and the images. We were able to obtain 80% accuracy in tagging posts requiring empathetic responses.
Social media contains unfiltered and unique information, which is potentially of great value, but, in the case of misinformation, can also do great harm. With regards to biomedical topics, false information can be particularly dangerous. Methods of a
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the trans
In this work, we present Lexical Unit Analysis (LUA), a framework for general sequence segmentation tasks. Given a natural language sentence, LUA scores all the valid segmentation candidates and utilizes dynamic programming (DP) to extract the maximu
With rising concern around abusive and hateful behavior on social media platforms, we present an ensemble learning method to identify and analyze the linguistic properties of such content. Our stacked ensemble comprises of three machine learning mode