ترغب بنشر مسار تعليمي؟ اضغط هنا

Hang in There: Lexical and Visual Analysis to Identify Posts Warranting Empathetic Responses

133   0   0.0 ( 0 )
 نشر من قبل Mimansa Jaiswal
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the past few years, social media has risen as a platform where people express and share personal incidences about abuse, violence and mental health issues. There is a need to pinpoint such posts and learn the kind of response expected. For this purpose, we understand the sentiment that a personal story elicits on different posts present on different social media sites, on the topics of abuse or mental health. In this paper, we propose a method supported by hand-crafted features to judge if the post requires an empathetic response. The model is trained upon posts from various web-pages and corresponding comments, on both the captions and the images. We were able to obtain 80% accuracy in tagging posts requiring empathetic responses.



قيم البحث

اقرأ أيضاً

Social media contains unfiltered and unique information, which is potentially of great value, but, in the case of misinformation, can also do great harm. With regards to biomedical topics, false information can be particularly dangerous. Methods of a utomatic fact-checking and fake news detection address this problem, but have not been applied to the biomedical domain in social media yet. We aim to fill this research gap and annotate a corpus of 1200 tweets for implicit and explicit biomedical claims (the latter also with span annotations for the claim phrase). With this corpus, which we sample to be related to COVID-19, measles, cystic fibrosis, and depression, we develop baseline models which detect tweets that contain a claim automatically. Our analyses reveal that biomedical tweets are densely populated with claims (45 % in a corpus sampled to contain 1200 tweets focused on the domains mentioned above). Baseline classification experiments with embedding-based classifiers and BERT-based transfer learning demonstrate that the detection is challenging, however, shows acceptable performance for the identification of explicit expressions of claims. Implicit claim tweets are more challenging to detect.
187 - Ted Pedersen 2020
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c lassifiers from lexical features found in manually labeled training data. However, our most successful system for classifying a tweet as offensive (or not) was a rule-based black--list approach, and we also experimented with combining the training data from two different but related SemEval tasks. Our best systems in each of the three OffensEval tasks placed in the middle of the comparative evaluation, ranking 57th of 103 in task A, 39th of 75 in task B, and 44th of 65 in task C.
174 - Yao Fu , Hao Zhou , Jiaze Chen 2019
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the trans fer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred to as textit{the Pivot Words}. Based on these pivot words, we propose a lexical analysis framework, textit{the Pivot Analysis}, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification, while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this taskfootnote{Our code can be found at https://github.com/FranxYao/pivot_analysis}.
In this work, we present Lexical Unit Analysis (LUA), a framework for general sequence segmentation tasks. Given a natural language sentence, LUA scores all the valid segmentation candidates and utilizes dynamic programming (DP) to extract the maximu m scoring one. LUA enjoys a number of appealing properties such as inherently guaranteeing the predicted segmentation to be valid and facilitating globally optimal training and inference. Besides, the practical time complexity of LUA can be reduced to linear time, which is very efficient. We have conducted extensive experiments on 5 tasks, including syntactic chunking, named entity recognition (NER), slot filling, Chinese word segmentation, and Chinese part-of-speech (POS) tagging, across 15 datasets. Our models have achieved the state-of-the-art performances on 13 of them. The results also show that the F1 score of identifying long-length segments is notably improved.
With rising concern around abusive and hateful behavior on social media platforms, we present an ensemble learning method to identify and analyze the linguistic properties of such content. Our stacked ensemble comprises of three machine learning mode ls that capture different aspects of language and provide diverse and coherent insights about inappropriate language. The proposed approach provides comparable results to the existing state-of-the-art on the Twitter Abusive Behavior dataset (Founta et al. 2018) without using any user or network-related information; solely relying on textual properties. We believe that the presented insights and discussion of shortcomings of current approaches will highlight potential directions for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا