ترغب بنشر مسار تعليمي؟ اضغط هنا

Claim Detection in Biomedical Twitter Posts

203   0   0.0 ( 0 )
 نشر من قبل Roman Klinger
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social media contains unfiltered and unique information, which is potentially of great value, but, in the case of misinformation, can also do great harm. With regards to biomedical topics, false information can be particularly dangerous. Methods of automatic fact-checking and fake news detection address this problem, but have not been applied to the biomedical domain in social media yet. We aim to fill this research gap and annotate a corpus of 1200 tweets for implicit and explicit biomedical claims (the latter also with span annotations for the claim phrase). With this corpus, which we sample to be related to COVID-19, measles, cystic fibrosis, and depression, we develop baseline models which detect tweets that contain a claim automatically. Our analyses reveal that biomedical tweets are densely populated with claims (45 % in a corpus sampled to contain 1200 tweets focused on the domains mentioned above). Baseline classification experiments with embedding-based classifiers and BERT-based transfer learning demonstrate that the detection is challenging, however, shows acceptable performance for the identification of explicit expressions of claims. Implicit claim tweets are more challenging to detect.



قيم البحث

اقرأ أيضاً

In the past few years, social media has risen as a platform where people express and share personal incidences about abuse, violence and mental health issues. There is a need to pinpoint such posts and learn the kind of response expected. For this pu rpose, we understand the sentiment that a personal story elicits on different posts present on different social media sites, on the topics of abuse or mental health. In this paper, we propose a method supported by hand-crafted features to judge if the post requires an empathetic response. The model is trained upon posts from various web-pages and corresponding comments, on both the captions and the images. We were able to obtain 80% accuracy in tagging posts requiring empathetic responses.
We present a corpus of 7,500 tweets annotated with COVID-19 events, including positive test results, denied access to testing, and more. We show that our corpus enables automatic identification of COVID-19 events mentioned in Twitter with text spans that fill a set of pre-defined slots for each event. We also present analyses on the self-reporting cases and users demographic information. We will make our annotated corpus and extraction tools available for the research community to use upon publication at https://github.com/viczong/extract_COVID19_events_from_Twitter
198 - Elise Jing , Yong-Yeol Ahn 2021
The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individu al behaviors and divergent policy adoption across regions. Here, to better understand such divide, we characterize and compare the pandemic narratives of the Democratic and Republican politicians on social media using novel computational methods including computational framing analysis and semantic role analysis. By analyzing tweets from the politicians in the U.S., including the president, members of Congress, and state governors, we systematically uncover the contrasting narratives in terms of topics, frames, and agents that shape their narratives. We found that the Democrats narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. By using contrasting framing and semantic roles, the Democrats emphasize the governments role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Both parties narratives also include shout-outs to their followers and blaming of the other party. Our findings concretely expose the gaps in the elusive consensus between the two parties. Our methodologies may be applied to computationally study narratives in various domains.
Background: Social media has the capacity to afford the healthcare industry with valuable feedback from patients who reveal and express their medical decision-making process, as well as self-reported quality of life indicators both during and post tr eatment. In prior work, [Crannell et. al.], we have studied an active cancer patient population on Twitter and compiled a set of tweets describing their experience with this disease. We refer to these online public testimonies as Invisible Patient Reported Outcomes (iPROs), because they carry relevant indicators, yet are difficult to capture by conventional means of self-report. Methods: Our present study aims to identify tweets related to the patient experience as an additional informative tool for monitoring public health. Using Twitters public streaming API, we compiled over 5.3 million breast cancer related tweets spanning September 2016 until mid December 2017. We combined supervised machine learning methods with natural language processing to sift tweets relevant to breast cancer patient experiences. We analyzed a sample of 845 breast cancer patient and survivor accounts, responsible for over 48,000 posts. We investigated tweet content with a hedonometric sentiment analysis to quantitatively extract emotionally charged topics. Results: We found that positive experiences were shared regarding patient treatment, raising support, and spreading awareness. Further discussions related to healthcare were prevalent and largely negative focusing on fear of political legislation that could result in loss of coverage. Conclusions: Social media can provide a positive outlet for patients to discuss their needs and concerns regarding their healthcare coverage and treatment needs. Capturing iPROs from online communication can help inform healthcare professionals and lead to more connected and personalized treatment regimens.
We introduce the well-established social scientific concept of social solidarity and its contestation, anti-solidarity, as a new problem setting to supervised machine learning in NLP to assess how European solidarity discourses changed before and aft er the COVID-19 outbreak was declared a global pandemic. To this end, we annotate 2.3k English and German tweets for (anti-)solidarity expressions, utilizing multiple human annotators and two annotation approaches (experts vs. crowds). We use these annotations to train a BERT model with multiple data augmentation strategies. Our augmented BERT model that combines both expert and crowd annotations outperforms the baseline BERT classifier trained with expert annotations only by over 25 points, from 58% macro-F1 to almost 85%. We use this high-quality model to automatically label over 270k tweets between September 2019 and December 2020. We then assess the automatically labeled data for how statements related to European (anti-)solidarity discourses developed over time and in relation to one another, before and during the COVID-19 crisis. Our results show that solidarity became increasingly salient and contested during the crisis. While the number of solidarity tweets remained on a higher level and dominated the discourse in the scrutinized time frame, anti-solidarity tweets initially spiked, then decreased to (almost) pre-COVID-19 values before rising to a stable higher level until the end of 2020.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا