ﻻ يوجد ملخص باللغة العربية
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built classifiers from lexical features found in manually labeled training data. However, our most successful system for classifying a tweet as offensive (or not) was a rule-based black--list approach, and we also experimented with combining the training data from two different but related SemEval tasks. Our best systems in each of the three OffensEval tasks placed in the middle of the comparative evaluation, ranking 57th of 103 in task A, 39th of 75 in task B, and 44th of 65 in task C.
This paper describes the Duluth systems that participated in SemEval-2017 Task 7 : Detection and Interpretation of English Puns. The Duluth systems participated in all three subtasks, and relied on methods that included word sense disambiguation and measures of semantic relatedness.
This paper describes the Duluth systems that participated in Task 14 of SemEval 2016, Semantic Taxonomy Enrichment. There were three related systems in the formal evaluation which are discussed here, along with numerous post--evaluation runs. All of
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BER
This paper describes the Duluth UROP systems that participated in SemEval--2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unig
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT