ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurable realizations of abstract systems of congruences

66   0   0.0 ( 0 )
 نشر من قبل Andrew Marks
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $n$-divisibility of actions. We consider the general question of when there are realizations of abstract systems of congruences satisfying various measurability constraints. We completely characterize which abstract systems of congruences can be realized by nonmeager Baire measurable pieces of the sphere under the action of rotations on the $2$-sphere. This answers a question of Wagon. We also construct Borel realizations of abstract systems of congruences for the action of $mathsf{PSL}_2(mathbb{Z})$ on $mathsf{P}^1(mathbb{R})$. The combinatorial underpinnings of our proof are certain types of decomposition of Borel graphs into paths. We also use these decompositions to obtain some results about measurable unfriendly colorings.



قيم البحث

اقرأ أيضاً

Given an action of a group $Gamma$ on a measure space $Omega$, we provide a sufficient criterion under which two sets $A, Bsubseteq Omega$ are measurably equidecomposable, i.e., $A$ can be partitioned into finitely many measurable pieces which can be rearranged using the elements of $Gamma$ to form a partition of $B$. In particular, we prove that every bounded measurable subset of $R^n$, $nge 3$, with non-empty interior is measurably equidecomposable to a ball via isometries. The analogous result also holds for some other spaces, such as the sphere or the hyperbolic space of dimension $nge 2$.
We investigate interactions between Ramsey theory, topological dynamics, and model theory. We introduce various Ramsey-like properties for first order theories and characterize them in terms of the appropriate dynamical properties of the theories in question (such as [extreme] amenability of a theory or some properties of the associated Ellis semigroups). Then we relate them to profiniteness and triviality of the Ellis groups of first order theories. In particular, we find various criteria for [pro]finiteness and for triviality of the Ellis group of a given theory from which we obtain wide classes of examples of theories with [pro]finite or trivial Ellis groups. As an initial motivation, we note that profiniteness of the Ellis group of a theory implies that the Kim-Pillay Galois group of this theory is also profinite, which in turn is equivalent to the equality of the Shelah and Kim-Pillay strong types. We also find several concrete examples illustrating the lack of implications between some fundamental properties. In the appendix, we give a full computation of the Ellis group of the theory of the random hypergraph with one binary and one 4-ary relation. This example shows that the assumption of NIP in the version of Newelskis conjecture for amenable theories (proved in [16]) cannot be dropped.
We give a completely constructive solution to Tarskis circle squaring problem. More generally, we prove a Borel version of an equidecomposition theorem due to Laczkovich. If $k geq 1$ and $A, B subseteq mathbb{R}^k$ are bounded Borel sets with the sa me positive Lebesgue measure whose boundaries have upper Minkowski dimension less than $k$, then $A$ and $B$ are equidecomposable by translations using Borel pieces. This answers a question of Wagon. Our proof uses ideas from the study of flows in graphs, and a recent result of Gao, Jackson, Krohne, and Seward on special types of witnesses to the hyperfiniteness of free Borel actions of $mathbb{Z}^d$.
In this short article, we showcase the derivation of an optimal predictor, when one part of systems output is not measured but is able to be predicted from the rest of the systems output which is measured. According to authors knowledge, similar deri vations have been done before but not in state-space representation.
Laczkovich proved that if bounded subsets $A$ and $B$ of $R^k$ have the same non-zero Lebesgue measure and the box dimension of the boundary of each set is less than $k$, then there is a partition of $A$ into finitely many parts that can be translate d to form a partition of $B$. Here we show that it can be additionally required that each part is both Baire and Lebesgue measurable. As special cases, this gives measurable and translation-on
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا