ﻻ يوجد ملخص باللغة العربية
Given an action of a group $Gamma$ on a measure space $Omega$, we provide a sufficient criterion under which two sets $A, Bsubseteq Omega$ are measurably equidecomposable, i.e., $A$ can be partitioned into finitely many measurable pieces which can be rearranged using the elements of $Gamma$ to form a partition of $B$. In particular, we prove that every bounded measurable subset of $R^n$, $nge 3$, with non-empty interior is measurably equidecomposable to a ball via isometries. The analogous result also holds for some other spaces, such as the sphere or the hyperbolic space of dimension $nge 2$.
We give a sketch of proof that any two (Lebesgue) measurable subsets of the unit sphere in $R^n$, for $nge 3$, with non-empty interiors and of the same measure are equidecomposable using pieces that are measurable.
Laczkovich proved that if bounded subsets $A$ and $B$ of $R^k$ have the same non-zero Lebesgue measure and the box dimension of the boundary of each set is less than $k$, then there is a partition of $A$ into finitely many parts that can be translate
An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $n$-divisibility of action
For an $r$-tuple $(gamma_1,ldots,gamma_r)$ of special orthogonal $dtimes d$ matrices, we say the Euclidean $(d-1)$-dimensional sphere $S^{d-1}$ is $(gamma_1,ldots,gamma_r)$-divisible if there is a subset $Asubseteq S^{d-1}$ such that its translations
The noncommutative Gurarij space $mathbb{mathbb{mathbb{NG}}}$, initially defined by Oikhberg, is a canonical object in the theory of operator spaces. As the Fra{i}ss{e} limit of the class of finite-dimensional nuclear operator spaces, it can be seen