ﻻ يوجد ملخص باللغة العربية
Formal models of learning from teachers need to respect certain criteria to avoid collusion. The most commonly accepted notion of collusion-freeness was proposed by Goldman and Mathias (1996), and various teaching models obeying their criterion have been studied. For each model $M$ and each concept class $mathcal{C}$, a parameter $M$-$mathrm{TD}(mathcal{C})$ refers to the teaching dimension of concept class $mathcal{C}$ in model $M$---defined to be the number of examples required for teaching a concept, in the worst case over all concepts in $mathcal{C}$. This paper introduces a new model of teaching, called no-clash teaching, together with the corresponding parameter $mathrm{NCTD}(mathcal{C})$. No-clash teaching is provably optimal in the strong sense that, given any concept class $mathcal{C}$ and any model $M$ obeying Goldman and Mathiass collusion-freeness criterion, one obtains $mathrm{NCTD}(mathcal{C})le M$-$mathrm{TD}(mathcal{C})$. We also study a corresponding notion $mathrm{NCTD}^+$ for the case of learning from positive data only, establish useful bounds on $mathrm{NCTD}$ and $mathrm{NCTD}^+$, and discuss relations of these parameters to the VC-dimension and to sample compression. In addition to formulating an optimal model of collusion-free teaching, our main results are on the computational complexity of deciding whether $mathrm{NCTD}^+(mathcal{C})=k$ (or $mathrm{NCTD}(mathcal{C})=k$) for given $mathcal{C}$ and $k$. We show some such decision problems to be equivalent to the existence question for certain constrained matchings in bipartite graphs. Our NP-hardness results for the latter are of independent interest in the study of constrained graph matchings.
Iterative machine teaching is a method for selecting an optimal teaching example that enables a student to efficiently learn a target concept at each iteration. Existing studies on iterative machine teaching are based on supervised machine learning a
Algorithmic machine teaching studies the interaction between a teacher and a learner where the teacher selects labeled examples aiming at teaching a target hypothesis. In a quest to lower teaching complexity, several teaching models and complexity me
Recently, model-free reinforcement learning has attracted research attention due to its simplicity, memory and computation efficiency, and the flexibility to combine with function approximation. In this paper, we propose Exploration Enhanced Q-learni
We present algorithms for efficiently learning regularizers that improve generalization. Our approach is based on the insight that regularizers can be viewed as upper bounds on the generalization gap, and that reducing the slack in the bound can impr
The performance of a machine learning system is usually evaluated by using i.i.d. observations with true labels. However, acquiring ground truth labels is expensive, while obtaining unlabeled samples may be cheaper. Stratified sampling can be benefic