ﻻ يوجد ملخص باللغة العربية
The performance of a machine learning system is usually evaluated by using i.i.d. observations with true labels. However, acquiring ground truth labels is expensive, while obtaining unlabeled samples may be cheaper. Stratified sampling can be beneficial in such settings and can reduce the number of true labels required without compromising the evaluation accuracy. Stratified sampling exploits statistical properties (e.g., variance) across strata of the unlabeled population, though usually under the unrealistic assumption that these properties are known. We propose two new algorithms that simultaneously estimate these properties and optimize the evaluation accuracy. We construct a lower bound to show the proposed algorithms (to log-factors) are rate optimal. Experiments on synthetic and real data show the reduction in label complexity that is enabled by our algorithms.
We study learning in a noisy bisection model: specifically, Bayesian algorithms to learn a target value V given access only to noisy realizations of whether V is less than or greater than a threshold theta. At step t = 0, 1, 2, ..., the learner sets
Finding an effective medical treatment often requires a search by trial and error. Making this search more efficient by minimizing the number of unnecessary trials could lower both costs and patient suffering. We formalize this problem as learning a
Counterfactual regret minimization (CFR) is the most popular algorithm on solving two-player zero-sum extensive games with imperfect information and achieves state-of-the-art performance in practice. However, the performance of CFR is not fully under
Federated learning involves a mixture of centralized and decentralized processing tasks, where a server regularly selects a sample of the agents and these in turn sample their local data to compute stochastic gradients for their learning updates. Thi
Recently, model-free reinforcement learning has attracted research attention due to its simplicity, memory and computation efficiency, and the flexibility to combine with function approximation. In this paper, we propose Exploration Enhanced Q-learni