ﻻ يوجد ملخص باللغة العربية
We present algorithms for efficiently learning regularizers that improve generalization. Our approach is based on the insight that regularizers can be viewed as upper bounds on the generalization gap, and that reducing the slack in the bound can improve performance on test data. For a broad class of regularizers, the hyperparameters that give the best upper bound can be computed using linear programming. Under certain Bayesian assumptions, solving the LP lets us jump to the optimal hyperparameters given very limited data. This suggests a natural algorithm for tuning regularization hyperparameters, which we show to be effective on both real and synthetic data.
Inverse problems arise in a number of domains such as medical imaging, remote sensing, and many more, relying on the use of advanced signal and image processing approaches -- such as sparsity-driven techniques -- to determine their solution. This pap
Inverse optimal transport (OT) refers to the problem of learning the cost function for OT from observed transport plan or its samples. In this paper, we derive an unconstrained convex optimization formulation of the inverse OT problem, which can be f
We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We dev
In modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labeled data. These include data from medical image processing and robotic interaction. Even though each individual task can
In the contextual linear bandit setting, algorithms built on the optimism principle fail to exploit the structure of the problem and have been shown to be asymptotically suboptimal. In this paper, we follow recent approaches of deriving asymptoticall