ترغب بنشر مسار تعليمي؟ اضغط هنا

A Metal-Insulator Transition via Wigner Crystallization in Boron Triangular Kagome Lattice

92   0   0.0 ( 0 )
 نشر من قبل Woohyun Han
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The flat band has attracted a lot of attention because it gives rise to many exotic phases, as recently demonstrated in magic angle twisted bilayer graphene. Here, based on first-principles calculations, we identify a metal-insulator transition in boron triangular Kagome lattice with a spin-polarized flat band at 2/3-filling. This phase transition is accompanied by the formation of a Wigner crystal, which is driven by Fermi surface nesting effect and thereby strong electron-phonon interactions, keeping ferromagnetism. Our calculation results suggest that boron triangular Kagome lattices with partially filled flat bands may open a new playground for many exotic quantum phases in two-dimensional systems, such as Winger crystallization and fractional quantum Hall states.



قيم البحث

اقرأ أيضاً

Interaction in a flat band is magnified due to the divergence in the density of states, which gives rise to a variety of many-body phenomena such as ferromagnetism and Wigner crystallization. Until now, however, most studies of the flat band physics are based on model systems, making their experimental realization a distant future. Here, we propose a class of systems made of real atoms, namely, carbon atoms with realistic physical interactions (dubbed here as Kagome graphene/graphyne). Density functional theory calculations reveal that these Kagome lattices offer a controllable way to realize robust flat bands sufficiently close to the Fermi level. Upon hole doping, they split into spin-polarized bands at different energies to result in a flat-band ferromagnetism. At a half filling, this splitting reaches its highest level of 768 meV. At smaller fillings, e.g., when { u}=1/6, on the other hand, a Wigner crystal spontaneously forms, where the electrons form closed loops localized on the grid points of a regular triangular lattice. It breaks the translational symmetry of the original Kagome lattice. We further show that the Kagome lattices exhibit good mechanical stabilities, based on which a possible route for experimental realization of the Kagome graphene is also proposed.
169 - Yuanping Chen , Y.Y. Sun , H. Wang 2015
A three-dimensional elemental carbon Kagome lattice (CKL), made of only fourfold coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60{deg} bond angles in the triangle rings, widely perceived to be energetically unfavorable, the CKL is found to display exceptional stability comparable to that of C60. The system allows us to study the effects of triangular frustration on the electronic properties of realistic solids, and it demonstrates a metal-insulator transition from that of graphene to a direct gap semiconductor in the visible blue region. By minimizing s-p orbital hybridization, which is an intrinsic property of carbon, not only the band edge states become nearly purely frustrated p states, but also the band structure is qualitatively different from any known bulk elemental semiconductors. For example, the optical properties are similar to those of direct-gap semiconductors GaN and ZnO, whereas the effective masses are comparable or smaller than those of Si.
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so that the ground state at the Rokhsar-Kivelson (RK) point of the corresponding quantum dimer model on the same lattice is a short-ranged spin liquid. Using the Pfaffian method, we derive an exact form for the free energy, and we find that the entropy is 1/3 ln2 per site, regardless of the weights of the bonds. The occupation probability of every bond is 1/4 in the case of equal weights on every bond. Similar to the case of lattices formed by corner-sharing triangles (such as the kagome and squagome lattices), we find that the dimer-dimer correlation function is identically zero beyond a certain (short) distance. We find in addition that monomers are deconfined on the TKL, indicating that there is a short-ranged spin liquid phase at the RK point. We also find exact results for the ground state energy of the classical Heisenberg model. The ground state can be ferromagnetic, ferrimagnetic, locally coplanar, or locally canted, depending on the couplings. From the dimer model and the classical spin model, we derive upper bounds on the ground state energy of the quantum Heisenberg model on the TKL.
Competing interactions and geometric frustration provide favourable conditions for exotic states of matter. Such competition often causes multiple phase transitions as a function of temperature and can lead to magnetic structures that break inversion symmetry, thereby inducing ferroelectricity [1-4]. Although this phenomenon is understood phenomenologically [3-4], it is of great interest to have a conceptually simpler system in which ferroelectricity appears coincident with a single magnetic phase transition. Here we report the first such direct transition from a paramagnetic and paraelectric phase to an incommensurate multiferroic in the triangular lattice antiferromagnet RbFe(MoO4)2 (RFMO). A magnetic field extinguishes the electric polarization when the symmetry of the magnetic order changes and ferroelectricity is only observed when the magnetic structure has chirality and breaks inversion symmetry. Multiferroic behaviour in RFMO provides a theoretically tractable example of ferroelectricity from competing spin interactions. A Landau expansion of symmetry-allowed terms in the free energy demonstrates that the chiral magnetic order of the triangular lattice antiferromagnet gives rise to a pseudoelectric field, whose temperature dependence agrees with that observed experimentally.
The lattice response of a prototype Mott insulator, SmTiO3, to hole doping is investigated with atomic-scale spatial resolution. SmTiO3 films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the fill ing-controlled Mott metal-insulator transition (MIT). The GdFeO3-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. The results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا