ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct transition from a disordered to a multiferroic phase on a triangular lattice

95   0   0.0 ( 0 )
 نشر من قبل Michel Kenzelmann
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Competing interactions and geometric frustration provide favourable conditions for exotic states of matter. Such competition often causes multiple phase transitions as a function of temperature and can lead to magnetic structures that break inversion symmetry, thereby inducing ferroelectricity [1-4]. Although this phenomenon is understood phenomenologically [3-4], it is of great interest to have a conceptually simpler system in which ferroelectricity appears coincident with a single magnetic phase transition. Here we report the first such direct transition from a paramagnetic and paraelectric phase to an incommensurate multiferroic in the triangular lattice antiferromagnet RbFe(MoO4)2 (RFMO). A magnetic field extinguishes the electric polarization when the symmetry of the magnetic order changes and ferroelectricity is only observed when the magnetic structure has chirality and breaks inversion symmetry. Multiferroic behaviour in RFMO provides a theoretically tractable example of ferroelectricity from competing spin interactions. A Landau expansion of symmetry-allowed terms in the free energy demonstrates that the chiral magnetic order of the triangular lattice antiferromagnet gives rise to a pseudoelectric field, whose temperature dependence agrees with that observed experimentally.



قيم البحث

اقرأ أيضاً

The flat band has attracted a lot of attention because it gives rise to many exotic phases, as recently demonstrated in magic angle twisted bilayer graphene. Here, based on first-principles calculations, we identify a metal-insulator transition in bo ron triangular Kagome lattice with a spin-polarized flat band at 2/3-filling. This phase transition is accompanied by the formation of a Wigner crystal, which is driven by Fermi surface nesting effect and thereby strong electron-phonon interactions, keeping ferromagnetism. Our calculation results suggest that boron triangular Kagome lattices with partially filled flat bands may open a new playground for many exotic quantum phases in two-dimensional systems, such as Winger crystallization and fractional quantum Hall states.
We examine the electronic properties of newly discovered ferroelectric metal LiOsO$_3$ combining density-functional and dynamical mean-field theories. We show that the material is close to a Mott transition and that electronic correlations can be tun ed to engineer a Mott multiferroic state in 1/1 superlattice of LiOsO$_3$ and LiNbO$_3$. We use electronic structure calculations to predict that the (LiOsO$_3$)$_1$/(LiNbO$_3$)$_1$ superlattice is a type-I multiferroic material with a ferrolectric polarization of 41.2~$mu$C cm$^{-2}$, Curie temperature of 927,K, and Neel temperature of 671,K. Our results support a route towards high-temperature multiferroics, emph{i.e.}, driving non-magnetic emph{polar metals} into correlated insulating magnetic states.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic propert ies. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
88 - R. Rawl , L. Ge , Z. Lu 2019
We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility, specific heat, elastic and inelastic neutron scattering measurements, and spin wave theory simulation on this system reveal that it has a 120 degree ordering ground state below T$_N$ = 1.45 K with in-plane nearest-neighbor exchange interaction ~0.11 meV. While the large separation 18.9 A between magnetic layers makes the inter-layer exchange interaction virtually zero, our results suggest that a weak easy-plane anisotropy is the driving force for the k$_m$ = (1/3 1/3 0) magnetic ordering. The magnetic properties of Ba$_8$MnNb$_6$O$_{24}$, along with its classical excitation spectra, contrast with the related triple perovskite Ba$_3$MnNb$_2$O$_9$, which shows easy-axis anisotropy, and the iso-structural compound Ba$_8$CoNb$_6$O$_{24}$, in which the effective spin-1/2 Co$^{2+}$ spins do not order down to 60 mK and in which the spin dynamics shows sign of strong quantum effects.
A system of hard rigid rods of length $k$ on hypercubic lattices is known to undergo two phases transitions when chemical potential is increased: from a low density isotropic phase to an intermediate density nematic phase, and on further increase to a high-density phase with no orientational order. In this paper, we argue that, for large $k$, the second phase transition is a first order transition with a discontinuity in density in all dimensions greater than $1$. We show the chemical potential at the transition is $approx k ln [k /ln k]$ for large $k$, and that the density of uncovered sites drops from a value $ approx (ln k)/k^2$ to a value of order $exp(-ak)$, where $a$ is some constant, across the transition. We conjecture that these results are asymptotically exact, in all dimensions $dgeq 2$. We also present evidence of coexistence of nematic and disordered phases from Monte Carlo simulations for rods of length $9$ on the square lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا