ﻻ يوجد ملخص باللغة العربية
The $mathcal{PT}-$symmetric quantum mechanical $V=ix^3$ model over the real line, $xinmathbb{R}$, is infrared (IR) truncated and considered as Sturm-Liouville problem over a finite interval $xinleft[-L,Lright]subsetmathbb{R}$. Via WKB and Stokes graph analysis, the location of the complex spectral branches of the $V=ix^3$ model and those of more general $V=-(ix)^{2n+1}$ models over $xinleft[-L,Lright]subsetmathbb{R}$ are obtained. The corresponding eigenvalues are mapped onto $L-$invariant asymptotic spectral scaling graphs $mathcal{R}subset mathbb{C}$. These scaling graphs are geometrically invariant and cutoff-independent so that the IR limit $Lto infty $ can be formally taken. Moreover, an increasing $L$ can be associated with an $mathcal{R}-$constrained spectral UV$to$IR renormalization group flow on $mathcal{R}$. The existence of a scale-invariant $mathcal{PT}$ symmetry breaking region on each of these graphs allows to conclude that the unbounded eigenvalue sequence of the $ix^3$ Hamiltonian over $xinmathbb{R}$ can be considered as tending toward a mapped version of such a $mathcal{PT}$ symmetry breaking region at spectral infinity. This provides a simple heuristic explanation for the specific eigenfunction properties described in the literature so far and clear complementary evidence that the $mathcal{PT}-$symmetric $V=-(ix)^{2n+1}$ models over the real line $xinmathbb{R}$ are not equivalent to Hermitian models, but that they rather form a separate model class with purely real spectra. Our findings allow us to hypothesize a possible physical interpretation of the non-Rieszian mode behavior as a related mode condensation process.
The work contains a detailed study of the scaling limit of a certain critical, integrable inhomogeneous six-vertex model subject to twisted boundary conditions. It is based on a numerical analysis of the Bethe ansatz equations as well as the powerful
We theoretically study the dynamics of typical optomechanical systems, consisting of a passive optical mode and an active mechanical mode, in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes. By fully analytical treatments for the dynami
Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the imp
We find the asymptotic behaviors of Toeplitz determinants with symbols which are a sum of two contributions: one analytical and non-zero function in an annulus around the unit circle, and the other proportional to a Dirac delta function. The formulas
Based on the results published recently [J. Phys. A: Math. Theor. 50, 065201 (2017)], the universal finite-size contributions to the free energy of the square lattice Ising model on the $Ltimes M$ rectangle, with open boundary conditions in both dire