ترغب بنشر مسار تعليمي؟ اضغط هنا

Optomechanical dynamics in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes

250   0   0.0 ( 0 )
 نشر من قبل Denggao Lai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study the dynamics of typical optomechanical systems, consisting of a passive optical mode and an active mechanical mode, in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes. By fully analytical treatments for the dynamics of the average displacement and particle numbers, we reveal the phase diagram under different conditions and the various regimes of both $mathcal{PT}$-symmetry and stability of the system. We find that by appropriately tuning either mechanical gain or optomechanical coupling, both phase transitions of the $mathcal{PT}$-symmetry and stability of the system can be flexibly controlled. As a result, the dynamical behaviors of the average displacement, photons, and phonons are radically changed in different regimes. Our study shows that $mathcal{PT}$-symmetric optomechanical devices can serve as a powerful tool for the manipulation of mechanical motion, photons, and phonons.



قيم البحث

اقرأ أيضاً

Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the imp lications of the former approach in the context of the latter. Motivated by the invariance of the $mathcal{PT}$ (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of $mathcal{PT}$-symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave function phases at adjacent sites occurs in the $mathcal{PT}$-symmetry broken region. Our results pave the way towards understanding the physically observable implications of time-invariants in the non-unitary dynamics produced by $mathcal{PT}$-symmetric Hamiltonians.
The optomechanical state transfer protocol provides effective, lossy, quantum beam-splitter-like dynamics where the strength of the coupling between the electromagnetic and mechanical modes is controlled by the optical steady-state amplitude. By rest ricting to a subspace with no losses, we argue that the transition from mode-hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a signature of the passive parity-time ($mathcal{PT}$) symmetry breaking transition in the underlying non-Hermitian quantum dimer. We compare the dynamics generated by the quantum open system (Langevin or Lindblad) approach to that of the $mathcal{PT}$-symmetric Hamiltonian, to characterize the cases where the two are identical. Additionally, we numerically explore the evolution of separable and correlated number states at zero temperature as well as thermal initial state evolution at room temperature. Our results provide a pathway for realizing non-Hermitian Hamiltonians in optomechanical systems at a quantum level.
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature whereas the real part induces a metric tensor on systems parameter manifold. This results in a unified conceptual framework to understand and explore physical properties of $mathcal{PT}$-symmetric systems from a geometric perspective. To illustrate the usefulness of the extended QGT, we show how its real part, i.e., the metric tensor, can be exploited as a tool to detect quantum phase transitions as well as spontaneous $mathcal{PT}$-symmetry breaking in $mathcal{PT}$-symmetric systems.
Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-d imensional, $mathcal{PT}$ potentials for a non-relativistic particle confined in a circular geometry. We show that the $mathcal{PT}$ symmetry threshold can be tuned by introducing a second gain-loss potential or its hermitian counterpart. Our results explicitly demonstrate that $mathcal{PT}$ breaking in two dimensions has a rich phase diagram, with multiple re-entrant $mathcal{PT}$ symmetric phases.
We theoretically demonstrate soliton steering in $mathcal{PT}$-symmetric coupled nonlinear dimers. We show that if the length of the $mathcal{PT}$-symmetric system is set to $2pi$ contrary to the conventional one which operates satisfactorily well on ly at the half-beat coupling length, the $mathcal{PT}$ dimer remarkably yields an ideal soliton switch exhibiting almost 99.99% energy efficiency with an ultra-low critical power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا