ﻻ يوجد ملخص باللغة العربية
We find the asymptotic behaviors of Toeplitz determinants with symbols which are a sum of two contributions: one analytical and non-zero function in an annulus around the unit circle, and the other proportional to a Dirac delta function. The formulas are found by using the Wiener-Hopf procedure. The determinants of this type are found in computing the spin-correlation functions in low-lying excited states of some integrable models, where the delta function represents a peak at the momentum of the excitation. As a concrete example of applications of our results, using the derived asymptotic formulas we compute the spin-correlation functions in the lowest energy band of the frustrated quantum XY chain in zero field, and the ground state magnetization.
We obtain asymptotic expansions for Toeplitz determinants corresponding to a family of symbols depending on a parameter $t$. For $t$ positive, the symbols are regular so that the determinants obey SzegH{o}s strong limit theorem. If $t=0$, the symbol
Based on the results obtained in [Hucht, J. Phys. A: Math. Theor. 50, 065201 (2017)], we show that the partition function of the anisotropic square lattice Ising model on the $L times M$ rectangle, with open boundary conditions in both directions, is
In this article, we study the large $n$ asymptotic expansions of $ntimes n$ Toeplitz determinants whose symbols are indicator functions of unions of arc-intervals of the unit circle. In particular, we use an Hermitian matrix model reformulation of th
We review the asymptotic behavior of a class of Toeplitz (as well as related Hankel and Toeplitz + Hankel) determinants which arise in integrable models and other contexts. We discuss Szego, Fisher-Hartwig asymptotics, and how a transition between th
The probability distribution of a function of a subsystem conditioned on the value of the function of the whole, in the limit when the ratio of their values goes to zero, has a limit law: It equals the unconditioned marginal probability distribution