ﻻ يوجد ملخص باللغة العربية
We present an alternative to the well-known Andersons formula for the probability that a first exit time from the planar region between two slopping lines -a_1 t -b_1 and a_2 t + b_2 by a standard Brownian motion is greater than T. As the Andersons formula, our representation is an infinite series from special functions. We show that convergence rate of both formulas depends only on terms (a_1 + a_2)(b_1 + b_2) and (b_1 + b_2)^2 /T and deduce simple rules of appropriate representations choose. We prove that for any given set of parameters a_1, b_1, a_2, b_2, T the sum of first 6 terms ensures precision 10^{-16}.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit
We investigate the probability that an insurance portfolio gets ruined within a finite time period under the assumption that the r largest claims are (partly) reinsured. We show that for regularly varying claim sizes the probability of ruin after rei
In this paper we study a class of risk-sensitive Markovian control problems in discrete time subject to model uncertainty. We consider a risk-sensitive discounted cost criterion with finite time horizon. The used methodology is the one of adaptive robust control combined with machine learning.
This paper studies best finitely supported approximations of one-dimensional probability measures with respect to the $L^r$-Kantorovich (or transport) distance, where either the locations or the weights of the approximations atoms are prescribed. Nec
These notes are the second half of the contents of the course given by the second author at the Bachelier Seminar (8-15-22 February 2008) at IHP. They also correspond to topics studied by the first author for her Ph.D.thesis.