ﻻ يوجد ملخص باللغة العربية
This paper studies best finitely supported approximations of one-dimensional probability measures with respect to the $L^r$-Kantorovich (or transport) distance, where either the locations or the weights of the approximations atoms are prescribed. Necessary and sufficient optimality conditions are established, and the rate of convergence (as the number of atoms goes to infinity) is discussed. In view of emerging mathematical and statistical applications, special attention is given to the case of best uniform approximations (i.e., all atoms having equal weight). The approach developed in this paper is elementary; it is based on best approximations of (monotone) $L^r$-functions by step functions, and thus different from, yet naturally complementary to, the classical Voronoi partition approach.
For arbitrary Borel probability measures on the real line, necessary and sufficient conditions are presented that characterize best purely atomic approximations relative to the classical Levy probability metric, given any number of atoms, and allowin
Let $X$ be the constrained random walk on ${mathbb Z}_+^d$ representing the queue lengths of a stable Jackson network and $x$ its initial position. Let $tau_n$ be the first time the sum of the components of $X$ equals $n$. $p_n doteq P_x(tau_n < tau_
Let $X$ be the constrained random walk on $mathbb{Z}_+^d$ $d >2$, having increments $e_1$, $-e_i+e_{i+1}$ $i=1,2,3,...,d-1$ and $-e_d$ with probabilities $lambda$, $mu_1$, $mu_2$,...,$mu_d$, where ${e_1,e_2,..,e_d}$ are the standard basis vectors. Th
We present an alternative to the well-known Andersons formula for the probability that a first exit time from the planar region between two slopping lines -a_1 t -b_1 and a_2 t + b_2 by a standard Brownian motion is greater than T. As the Andersons f
This paper develops asymptotics and approximations for ruin probabilities in a multivariate risk setting. We consider a model in which the individual reserve processes are driven by a common Markovian environmental process. We subsequently consider a