ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal stopping time on semi-Markov processes with finite horizon

147   0   0.0 ( 0 )
 نشر من قبل Zhong-Wei Liao
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finite horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.



قيم البحث

اقرأ أيضاً

201 - Xiongfei Jian , Xun Li , Fahuai Yi 2014
In this paper, we investigate dynamic optimization problems featuring both stochastic control and optimal stopping in a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic op timal control and stopping problems in the existing literature, to study a managers decision. We formulate our model to a free boundary problem of a fully nonlinear equation. Furthermore, by means of a dual transformation for the above problem, we convert the above problem to a new free boundary problem of a linear equation. Finally, we apply the theoretical results to challenging, yet practically relevant and important, risk-sensitive problems in wealth management to obtain the properties of the optimal strategy and the right time to achieve a certain level over a finite time investment horizon.
172 - Diana Dorobantu 2008
Our purpose is to study a particular class of optimal stopping problems for Markov processes. We justify the value function convexity and we deduce that there exists a boundary function such that the smallest optimal stopping time is the first time w hen the Markov process passes over the boundary depending on time. Moreover, we propose a method to find the optimal boundary function.
In this article we study and classify optimal martingales in the dual formulation of optimal stopping problems. In this respect we distinguish between weakly optimal and surely optimal martingales. It is shown that the family of weakly optimal and su rely optimal martingales may be quite large. On the other hand it is shown that the Doob-martingale, that is, the martingale part of the Snell envelope, is in a certain sense the most robust surely optimal martingale under random perturbations. This new insight leads to a novel randomized dual martingale minimization algorithm that doesnt require nested simulation. As a main feature, in a possibly large family of optimal martingales the algorithm efficiently selects a martingale that is as close as possible to the Doob martingale. As a result, one obtains the dual upper bound for the optimal stopping problem with low variance.
In this paper we characterize the distribution of the first exit time from an arbitrary open set for a class of semi-Markov processes obtained as time-changed Markov processes. We estimate the asymptotic behaviour of the survival function (for large $t$) and of the distribution function (for small $t$) and we provide some conditions for absolute continuity. We have been inspired by a problem of neurophyshiology and our results are particularly usefull in this field, precisely for the so-called Leacky Integrate-and-Fire (LIF) models: the use of semi-Markov processes in these models appear to be realistic under several aspects, e.g., it makes the intertimes between spikes a r.v. with infinite expectation, which is a desiderable property. Hence, after the theoretical part, we provide a LIF model based on semi-Markov processes.
138 - Chonghu Guan , Xun Li , Zuoquan Xu 2015
In this paper, we investigate an interesting and important stopping problem mixed with stochastic controls and a textit{nonsmooth} utility over a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic optimal control and stopping problems in the existing literature, to figure out a managers decision. We formulate our model to a free boundary problem of a fully textit{nonlinear} equation. By means of a dual transformation, however, we can convert the above problem to a new free boundary problem of a textit{linear} equation. Finally, using the corresponding inverse dual transformation, we apply the theoretical results established for the new free boundary problem to obtain the properties of the optimal strategy and the optimal stopping time to achieve a certain level for the original problem over a finite time investment horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا