ﻻ يوجد ملخص باللغة العربية
Suppose $rho_1, rho_2$ are two $ell$-adic Galois representations of the absolute Galois group of a number field, such that the algebraic monodromy group of one of the representations is connected and the representations are locally potentially equivalent at a set of places of positive upper density. We classify such pairs of representations and show that up to twisting by some representation, it is given by a pair of representations one of which is trivial and the other abelian. Consequently, assuming that the first representation has connected algebraic monodromy group, we obtain that the representations are potentially equivalent, provided one of the following conditions hold: (a) the first representation is absolutely irreducible; (b) the ranks of the algebraic monodromy groups are equal; (c) the algebraic monodromy group of the second representation is also connected and (d) the commutant of the image of the second representation remains the same upon restriction to subgroups of finite index of the Galois group.
We study the relationship between potential equivalence and character theory; we observe that potential equivalence of a representation $rho$ is determined by an equality of an $m$-power character $gmapsto Tr(rho(g^m))$ for some natural number $m$. U
For every prime number $pgeq 3$ and every integer $mgeq 1$, we prove the existence of a continuous Galois representation $rho: G_mathbb{Q} rightarrow Gl_m(mathbb{Z}_p)$ which has open image and is unramified outside ${p,infty}$ (resp. outside ${2,p,i
A strategy to address the inverse Galois problem over Q consists of exploiting the knowledge of Galois representations attached to certain automorphic forms. More precisely, if such forms are carefully chosen, they provide compatible systems of Galoi
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista
Let E be a CM number field, F its maximal totally real subfield, c the generator of Gal(E/F), p an odd prime totally split in E, and S a finite set of places of E containing the places above p. Let r : G_{E,S} --> GL_3(F_p^bar) be a modular, absolu