ترغب بنشر مسار تعليمي؟ اضغط هنا

Finiteness theorems for potentially equivalent Galois representations: extension of Faltings finiteness criteria

84   0   0.0 ( 0 )
 نشر من قبل Plawan Das
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the relationship between potential equivalence and character theory; we observe that potential equivalence of a representation $rho$ is determined by an equality of an $m$-power character $gmapsto Tr(rho(g^m))$ for some natural number $m$. Using this, we extend Faltings finiteness criteria to determine the equivalence of two $ell$-adic, semisimple representations of the absolute Galois group of a number field, to the context of potential equivalence. We also discuss finiteness results for twist unramified representations.



قيم البحث

اقرأ أيضاً

Suppose $rho_1, rho_2$ are two $ell$-adic Galois representations of the absolute Galois group of a number field, such that the algebraic monodromy group of one of the representations is connected and the representations are locally potentially equiva lent at a set of places of positive upper density. We classify such pairs of representations and show that up to twisting by some representation, it is given by a pair of representations one of which is trivial and the other abelian. Consequently, assuming that the first representation has connected algebraic monodromy group, we obtain that the representations are potentially equivalent, provided one of the following conditions hold: (a) the first representation is absolutely irreducible; (b) the ranks of the algebraic monodromy groups are equal; (c) the algebraic monodromy group of the second representation is also connected and (d) the commutant of the image of the second representation remains the same upon restriction to subgroups of finite index of the Galois group.
95 - Plawan Das , C. S. Rajan 2020
We introduce a notion of inertial equivalence for integral $ell$-adic representation of the Galois group of a global field. We show that the collection of continuous, semisimple, pure $ell$-adic representations of the absolute Galois group of a globa l field lifting a fixed absolutely irreducible residual representation and with given inertial type outside a fixed finite set of places is uniformly bounded independent of the inertial type.
We prove two finiteness results for reductions of Hecke orbits of abelian varieties over local fields: one in the case of supersingular reduction and one in the case of reductive monodromy. As an application, we show that only finitely many abelian v arieties on a fixed isogeny leaf admit CM lifts, which in particular implies that in each fixed dimension $g$ only finitely many supersingular abelian varieties admit CM lifts. Combining this with the Kuga-Satake construction, we also show that only finitely many supersingular $K3$-surfaces admit CM lifts. Our tools include $p$-adic Hodge theory and group theoretic techniques.
273 - Tomohiro Yamada 2020
Some new results concerning the equation $sigma(N)=aM, sigma(M)=bN$ are proved. As a corollary, there are only finitely many odd superperfect numbers with a fixed number of distinct prime factors.
106 - Ke Chen , Xin Lu , Kang Zuo 2016
In this paper we study the Coleman-Oort conjecture for superelliptic curves, i.e., curves defined by affine equations $y^n=F(x)$ with $F$ a separable polynomial. We prove that up to isomorphism there are at most finitely many superelliptic curves of fixed genus $ggeq 8$ with CM Jacobians. The proof relies on the geometric structures of Shimura subvarieties in Siegel modular varieties and the stability properties of Higgs bundles associated to fibred surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا