ﻻ يوجد ملخص باللغة العربية
For every prime number $pgeq 3$ and every integer $mgeq 1$, we prove the existence of a continuous Galois representation $rho: G_mathbb{Q} rightarrow Gl_m(mathbb{Z}_p)$ which has open image and is unramified outside ${p,infty}$ (resp. outside ${2,p,infty}$) when $pequiv 3$ mod $4$ (resp. $p equiv 1$ mod $4$).
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista
A strategy to address the inverse Galois problem over Q consists of exploiting the knowledge of Galois representations attached to certain automorphic forms. More precisely, if such forms are carefully chosen, they provide compatible systems of Galoi
Suppose $rho_1, rho_2$ are two $ell$-adic Galois representations of the absolute Galois group of a number field, such that the algebraic monodromy group of one of the representations is connected and the representations are locally potentially equiva
This article is the first part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. In this first part, we determine the smallest field over which the projectivi
Let E be a CM number field, F its maximal totally real subfield, c the generator of Gal(E/F), p an odd prime totally split in E, and S a finite set of places of E containing the places above p. Let r : G_{E,S} --> GL_3(F_p^bar) be a modular, absolu