ﻻ يوجد ملخص باللغة العربية
Despite decades of research in this area, mesh adaptation capabilities are still rarely found in numerical simulation software. We postulate that the primary reason for this is lack of usability. Integrating mesh adaptation into existing software is difficult as non-trivial operators, such as error metrics and interpolation operators, are required, and integrating available adaptive remeshers is not straightforward. Our approach presented here is to first integrate Pragmatic, an anisotropic mesh adaptation library, into DMPlex, a PETSc object that manages unstructured meshes and their interactions with PETScs solvers and I/O routines. As PETSc is already widely used, this will make anisotropic mesh adaptation available to a much larger community. As a demonstration of this we describe the integration of anisotropic mesh adaptation into Firedrake, an automated Finite Element based system for the portable solution of partial differential equations which already uses PETSc solvers and I/O via DMPlex. We present a proof of concept of this integration with a three-dimensional advection test case.
The use of composable abstractions allows the application of new and established algorithms to a wide range of problems while automatically inheriting the benefits of well-known performance optimisations. This work highlights the composition of the P
We describe by means of some examples how some functionality of the mesh adaptation package trullekrul can be used in pde2path.
We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instea
We describe an adaptive version of a method for generating valid naturally curved quadrilateral meshes. The method uses a guiding field, derived from the concept of a cross field, to create block decompositions of multiply connected two dimensional d
We present an implementation of the trimmed serendipity finite element family, using the open source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring $H^1$, hcurl, or hdiv-conf